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Chapter 1

Introduction

It is well known that fiber-reinforced composites are vulnerable to transverse
concentrated loads such as low-velocity impact, which can result in extensive de-
laminations and multiple matrix cracking [1-34]. Such internal damage can cause

significant reduction of the load carrying capacity of structures made of composites.

Because of the significance of the problem, numerous experimental and analyt-
ical investigations have been performed to study the damage resulting from trans-
verse loads. The analytical work previously developed has emphasized estimating
the overall delamination sizes. Wu and Springer [4, 16] proposed a non-dimensional
empirical expression which requires several parameters to be determined from ap-
propriate experiments. Gu and Sun [21] developed a model for estimating the im-
pact damage size in sheet molding compound (SMC) composites. The applicability
of their model to long fiber reinforced laminates is questionable. Choi and Chang
(8, 32] proposed a semi-empirical model based on failure mechanisms for predicting
the delamination size and locations due to low-velocity impact. Although the model
provides reasonable estimates of the damage size, the mechanics of damage growth
and the material behavior during impact cannot be obtained from the model. Finn

and Springer [2] developed an energy criterion for predicting delamination sizes

1




Chapter 1: Introduction 2

and locations for laminates due to both low-velocity and quasi-static loading. The
model needs a quantity which was correlated to the energy per unit area required
to delaminate an interface. None of the above mentioned models considered the

detailed fracturing process during the formation of the damage.

Several investigators have indicated based on their experiments that for some
ply orientations, surface matrix cracking could be produced without generating
delaminations by carefully adjusting the impact velocity or the amount of the ap-
plied load. However, whenever there was a delamination, there were matrix cracks
accompanied with the delamination. In other words, matrix cracking and delami-
nation were detected co-existing in most test conditions. An energy threshold also
exists below which no damage could be generated. Experiments have demonstrated
that similar results obtained from low-velocity impact tests could be produced by

quasi-static transverse loads (1, 3, 7, 9].

Jones, Joshi and Sun [6, 7, 27] have suggested that matrix cracking is the
initial impact damage mode. Recently, Choi et al. [8, 32, 33, 34] investigated
impact damage using a cylindrical indenter. Because the indenter produced a line
load during impact, it simplified the impact damage pattern from three dimensions
to two dimensions. As a result, the damage modes could be detected from the side of
the specimens by the naked eye without cutting the specimens. Their study showed
that the impact energy (velocity) threshold ( the minimum energy required to cause
damage) is associated with the energy required to initiate matrix cracks. It was
concluded that matrix cracking is the initial impact damage mode and delaminations

are generated from the matrix cracks.

Basically, the initial matrix cracks have been classified by several investigators
[7, 8] into two types: the shear crack and bending crack. The former appears

inside the laminate and is located a distance from the impacting area, but the
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latter occurs directly beneath the transverse load in the outermost layers of the
laminate. Previous studies [8, 32, 33, 34] have shown that the extent of delamination
strongly depends upon the location of the initial matrix cracks. Choi et al. showed
experimentally from their line-loading impact study that the shear crack-induced
damage is violent and catastrophic, but bending crack-induced damage is quite
progressive. It is apparent that there is a strong interaction between matrix cracking
and delamination growth in laminated composites resulting from transverse loads
[1-8]. In contrast, this strong interaction does not appear for the panel due to

in-plane loads.

In the past, matrix cracking and delamination have been frequently treated in
the literature as two separable damage modes, where the former occurred at an early
stage of loading and was related to the initial stage of failure, while the latter was
associated with the final stage of failure of composites. However, in transverse load-
ing, matrix cracking once developed seems to affect delamination significantly. This
phenomenon seems to set apart the major difference in damage growth mechanisms
between transverse concentrated loadings and in-plane loadings. It is therefore be-
lieved that this interaction must be thoroughly studied in order to fundamentally
understand the damage mechanics. Knowledge of the damage mechanics is criti-
cally important to material scientists for improving impact resistance of composites
and to design engineers for selecting and designing adequate composite structures

which may be subjected to transverse loads.

Limited work has been performed in studying the damage mechanics and the
interaction between matrix cracking and delamination [38, 39, 46, 47, 48]. The
models of Bostaph and Elber [38] and Grady et al. [39] provide an estimate of the
delamination growth, but require a priori knowledge of the number and locations

of delaminations. Another assumption in Bostaph and Elber’s model is that all
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delaminations grow to the same size. Grady’s model applies only to relatively large
delaminations. However, matrix cracking was not considered in their research. The
fracture modes controlling delamination growth of laminated composites subjected
to transverse concentrated loads have not yet been adequately identified. Further-
more, the fracture modes contributing to the delamination propagation could be
different with or without taking into account the effect of matrix cracking. Identi-
fying these fracture modes will be important for designing composite material and
structural systems which are more damage resistant to transverse loads. Sun et al.
[46] performed a 2-D linear study of initiation of delamination growth induced by
a surface bending crack for a cross-ply laminate. They found that Mode I domi-
nates the initiation of delamination growth. The very recent models of Martin et
al. [47) and Salpekar [48] studied the effect of shear crack on the delamination for a
curved panel and a flat panel respectively by fracture mechanics. Their 2-D mod-
els were based on a linear analysis and only initiation of the delamination growth
was considered. Their research may be thought to be parallel to the 2-D model of
this thesis research effort [49-51]. Recently, Liu [55] modeled an embedded circular
delamination by a thin soft isotropic layer with a linear finite element method and
showed that Mode II and Mode III fractures predominantly control the growth of
the embedded delamination due to a point load. No matrix cracking was considered

in the analysis.

Accordingly, the objective of this investigation was to study the damage me-
chanics of laminated composites subjected to transverse concentrated loading and
to fundamentally understand the interaction between matrix cracking and delami-
nation growth. Both flat and cylindrical composites were considered. To simplify
the problem, only cross-ply laminated composite panels were studied, and the load

was applied quasi-statically.
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In Chapter 2, the major approach for achieving the objectives of the investiga-
.ion is briefly outlined. Chapter 3 describes a 2-D simplified study both analytically
and experimentally. Simplified damage patterns are presented and damage initia-
tion and growth is discussed. An analytical model, consisting of a stress analysis,
a failure analysis, and a contact analysis, is presented in detail and verified both
analytically and experimentally. The interaction between matrix cracking and de-
lamination is discussed. In Chapter 4, a 3-D model is presented to study the effect
of initial matrix cracks on the propagation of delamination due to a spherical in-
denter loading. The model also consists of a stress analysis, a contact analysis,
and a failure analysis. The contact between the indenter and the plate, as well as
between the delaminated interfaces is modelled. The model is verified extensively
by comparing the predictions with existing data and experimental data. Numerical
examples are also presented for a toughened composite system and moderately thick
composites. The modes contributing to the delamination propagation are identified
and discussed. The interfaces for the 2-D and 3-D computer codes are presented in

Appendices D and E.




Chapter 2

Method of Approach

§2.1 The Objectives

This research was performed to investigate damage development in fiber-reinforced
laminated composites induced by a quasi-static transverse concentrated load, as

shown in Figure 2.1. The major objectives of the research were as follows:

1. to study damage mechanisms and mechanics of fiber-reinforced laminated com-

posites due to quasi-impact loading;

2. to develop adequate models for predicting quasi-impact damage in the materi-

als.
3. to study the interaction between matrix cracking and delamination growth.

In order to achieve these objectives, this research was carried out in two se-

quential studies as follows:
1. Damage induced by a cylindrical indenter.

2. Damage induced by a spherical indenter.

6




Chapter 2: Method of Approach

Figure 2.1 Description of the problem. A laminated composite panel subjected

to a transverse load applied by a spherically-nosed indenter.
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§2.2 The Major Tasks

2.2.1 Damage Induced by a Cylindrical Indenter

A 2-D analytical model was developed for predicting damage in laminated
composites resulting from a quasi-static line load applied by a cylindrical inden-
ter. Stresses and strains in composites were calculated from a nonlinear finite
element code based on generalized plane strain conditions. A contact model was
implemented for the cracked/delaminated systems to handle contact conditions of
cracked interfaces. A modified Hashin matrix failure criterion and delamination cri-
terion were used to predict the initial damage. A linear fracture mechanics criterion
was adopted for predicting the damage propagation. Extensive comparison between
the predictions and experiments was made during the research. This research was
expected to be able to characterize the basic failure modes and mechanisms of lami-
nated composites resulting from transverse concentrated loading in two dimensions.
The focus was on the type of initial damage mode and how it affected the damage
growth. The stable and unstable damage growth resulting from transverse loading

depending on the location of the initial damage were emphasized.
2.2.2 Damage Induced by a Spherical Indenter

A 3-D analytical model was also developed for predicting damage in laminated
composites resulting from a quasi-static concentrated load applied by a spherical
indenter. The focus was on the effect of initial matrix cracking on the delamination
propagation. The model consisted of a stress analysis for determining the stress
distribution inside the material during the loading, a contact analysis for modeling
the contact between the indenter and the laminate as well as contact between the

cracked interfaces, and a failure analysis for predicting the direction and extent of
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delamination propagation. In the stress analysis, finite deformation was considered
and a three-dimensional nonlinear finite element was used to provide stress and
strain information. In the contact analysis, a general contact model was proposed
based on an augmented Lagrangian method for modeling the indenter-plate contact
and cracked interfaces contact, respectively. Comparisons were also made between

the experiments and predictions during the investigation.




Chapter 3

Damage Induced by a Cylindrical Indenter

§3.1 Statement of Problem

In this problem, a flat or cylindrical panel made of fiber-reinforced laminated

composites which is clamped along two parallel edges and free of support along the

others was considered. A transverse concentrated line load was then applied at the

center line of the plate parallel to the two clamped edges, as shown in Figure 3.1.

The laminate could be either [0,,/90,]5 or [90,:/0,], layup, where m and n can be

arbitrary integers. It was desired to obtain the following:

1.

2.

3.

4.

the failure and the response of the structure to the applied load;
the initiation of matrix cracking and the corresponding magnitude of the load;
delamination initiation and propagation;

extent of delamination as a function of the applied load.

§3.2 Analysis

The analytical model proposed for describing the behavior of laminated com-

posite panels with both matrix cracks and delaminations consists of three parts: a

~ stress analysis, a contact analysis, and a failure analysis. The stress analysis was

10
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Figure 3.1 Description of the problem: a laminated composite panel (above: flat

and below: curved) subjected to a transverse concentrated line load

uniform through the width.
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developed based on the large deformation theory for analyzing the global and local
deformations of the sublaminates. The contact analysis used the Lagrange multi-
plier method for modeling the matrix crack and delamination interface condition
during loading. The failure analysis was proposed for predicting the occurrence of

matrix cracking and for modeling delamination initiation and propagation.

3.2.1 Stress Analysis

As the local deformations of the laminate could be substantial due to the
concentrated load, finite deformation theory [70-74] was adopted in the analysis.
The total potential energy of a laminate without damage under the given load can
be described as

Rply

= Z/ _W™ET °dQ—/s T, - u; °ds (3.1)

m=1
where npyy is the total number of layers, 2™ is the cross-sectional area of the
mth layer in the reference configuration, and °S is the boundary in the reference
configuration where the tractions °T; are applied.

The components of the second Piola-Kirchhoff stress in the mth layer can be

expressed by the constitutive relation as

where E[; are the components of Green'’s strain tensor. C[7;, are the orthotropic
material moduli for the mth layer.

Based on the virtual work principle, the following equation can be obtained
from Eq. (3.1) for an uncracked laminate:

Tply
si=Y [ ST6ET dQ - / °T; - 6u; °ds = 0 (3.3)
nm °S

m=1
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The 2bove equation is valid for any uncracked laminated composite undergoing
finite deformations in both two and three dimensions.

In the following, the formulation is given for a laminated composite subjected
to a line load. It was assumed that the width of the laminate was considerably
greater than its thickness, hence the problem was analyzed two-dimensionally. A
two-dimensional generalized plane strain condition in the £, — 3 plane was adopted.
Therefore, as a first approximation, the displacement field of the laminate was

assumed in the form [40-42):

u1 = u1(z1,23)

U = Iy (34)

u3 = u3(z1,73)
where a is a constant, and u;,us,u3 are the displacements in the z, — 75 — z3
coordinates, respectively. Consequently, the strain E,, is constant, but need not be
zero. However, the free edge effect on the response of the panel is neglected.

Substituting the above displacement field of the laminate into Eq. (3.3) provides

a nonlinear equilibrium equation for any uncracked laminate subjected to a line load.
However, for cracked laminates, Eq. (3.3) cannot be applied directly because of the

presence of crack interfaces generated inside the materials. The contact condition

of the interfacial contact during loading must be included in the analysis.

3.2.2 Contact Analysis

When a laminated composite is subject to transverse concentrated loading, the
presence of matrix cracks and delaminations in the laminate requires that the con-
dition of matrix and delamination surfaces during deformation be specified in the
analysis. Because of material mismatch, relative sliding could occur along the in-

terface at which neighboring plies have different ply orientation. A rigorous contact
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treatment was essential for accurate modeling of the inierface contact conditions.
In order to prevent the contact surfaces from overlapping, an impenetrability
condition must be specified and satisfied at all times along the contact interfaces.
This condition requires that the shortest distance (defined as a gap g) between
two contact surfaces must be greater than or equal to zero. Mathematically, the
impenetrability constraint can be stated as ¢ > 0. Upon contact, the contact
force must also be less than or equal to zero (Ay < 0). Accordingly, the contact

constraints for normal contact can be specified as
AN <0
g(ui) 20 (3.5)
Ang(ui) =0
This is the well-known Kuhn-Tucker conditions for normal contact. The three equa-
tions in Eq. (3.5) reflect, respectively, the compressive normal traction constraint,
the impenetrability constraint, and the requirement that the pressure is nonzero
only when ¢ = 0.

Accordingly, Eq. (3.5) must be considered together with Eq. (3.3) in order to
analyze composites containing internal cracks and delaminations. Several methods
exist for implementing the contact constraints [62-63]. One of the most popular
choices is the Lagrange multiplier method [63]. The Lagrange multiplier method
enforces the exact constraints, and it was adopted in the present two-dimensional
study.

By imposing the constraint conditions into the total potential energy using the

Lagrange multiplier technique, the total potential energy given in Eq. (3.1) can be

modified as
Nply
M =Y [ wrEg)de- [ Toucds+ [Avewdr (36
mop Jeam o5 r
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where Ay is the Lagrange multiplier and I is the sum of matrix crack and delami-
nated surfaces in contact.

The variational equations, corresponding to the Lagrange multiplier formula-
tion, result in

Nply

E / S{;‘éE{;‘ daa — / °T, - §u; %ds +/ AnbgdT =0,
m=1 Y™ °S r (3.7)
/5/\N9dr =0
r
Or in a more concise form, the above equations may be rewritten as
. (3.8)

/D\Ngdl" =0
r

where 611 is the virtual work for an unconstrained system, and é\n and ég are the
variation of Ay and g, respectively.

In order to solve the above equations, the gap fizuction g needs to be defined
specifically for any contact interface. For the purpose of generalization, any one of
the contact bodies can be defined as “contactor” and the other can be referred to as
“target”. Any points belonging to the contact region of the contactor will be called
“slave points” and those on the surface of the target will be referred to as “master
points”. In the following, m and s indicate points on the master surface and the
slave surface, respectively.

Therefore, for a given pair of potential contact points along the contact surfaces,

Zx, on the contactor’s surface and &. on the target’s surface, the gap function is

defined as
lg(ui)| = |&, — T || = min ||z, - T (3.9)

where &,, can be any point on the target surface. Expressed in words, &, (contact
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Slave Surface

& Master Surface

Figure 3.2 Local coordinate systems of contact surfaces in the two-dimensional

study.
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point) is the closest point projection of &, onto the target surface, as shown in

Figure 3.3.

It is necessary to give an accurate description of the local geometry on the
contact surfaces during the deformation. Here, a local coordinate system needs to
be defined such that it is suitable for a definition of the contact constraints. This
local coordinate system is fixed along the target surface, as shown in Figure 3.3.
Before the local coordinate system can be established, it is necessary to parametrize
the contact surface locally. In terms of local surface parameters £, the following basis

for any master point on the target surface is defined:

e1<s)=gf$ (or Tme()) )

ot

e2(€) = (0,1,0)7 or (0,-1,0)7

e €1(€) X €5(6)
€(8) =0 = 1o xeo)] |

(3.10)

where €,, €3, and €3 are vectors in 3-D Cartesian space. The sign of e€; depends
on the definition of the target surface such that the normal m is outward on the

target surface (Figure 3.3).

Accordingly, the gap function g can be written as
g=n-d=n.(z,-z.) (3.11)

This definition is t-rue for both 3-D and 2-D contact gap definition. In terms of local

coordinate system the gap g can be written as follows:
g=(2,—x.) n(¢) (3.12)

In order to solve Eq. (3.8), a nonlinear finite element method was developed.

The numerical formulation will be presented in section 3.3.
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Contactor

I' (Contact Interface)

g <0: overlapping
g=0: contact

g>0: no contact

Figure 3.3 The definition of gap function in two-dimensional space.
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3.2.3 Failure Analysis

The primary failure modes of interest were matrix cracking and delamination,
hence fiber breakage was not considered. Failure criteria were proposed for pre-
dicting the occurrence of the initial failure. A fracture analysis based on the linear
elastic fracture mechanics theory was also adopted for modeling the crack propaga-

tion once the damage initiated.

Prediction of Initial Failure
In order to predict initial damage, a matrix failure criterion and a delamination

failure criterion [32, 44] were adopted. The matrix failure criterion can be described

2 2 '
Tyz Tyy | _ 2
( 3 ) + ( Y, ) en (3.13)

The occurrence of matrix cracking is predicted when the value of e,, is equal to or

as

greater than unity.

The delamination failure criterion can be expressed as

Ozz : 03:"'03: _ .2 3.14
},' + 5'2 =€4 ( . )

The occurrence of delamination at the interface was predicted when the value of ¢4
was equal to or greater than unity. In Eq. (3.13) and Eq. (3.14), S is the in-situ
interlaminar shear strength within the laminate under consideration, and Y; is the
in-situ ply tré.nsverse tensile strength [32]. ¢, and o, are the interlaminar shear
stresses, and 0., and oy, are the out-of-plane normal stress and in-plane transverse
normal stress respectively within the laminate under consideration.

Whenever the combined state of stresses satisfied either one of the criteria,
initial failure was predicted. The corresponding failure criterion indicated the initial

mode of failure. Once the initial failure was predicted, fracture analysis was applied




Chapter 3: Damage Induced by a Cylindrical Indenter 20

to simulate the growth of the local damage as the applied load continued to increase.

Modeling of Crack Propagation

In order to simulate crack propagation, a small initial crack was introduced
immediately after the occurrence of the initial failure, depending upon the type of
the failure mode. For matrix cracking, a vertical crack was immediately generated
in the failed ply at the location where matrix cracking was predicted. The size of
the crack was assumed to be equal to the thickness of the cracked ply group and
fully extended to the interfaces of the neighboring plies, which have different ply
orientations. However, if delamination was predicted as the initial failure mode,
an initial delamination length about one ply thickness would be introduced at the
predicted interface. The stresses and deformations of the laminate would then be
recalculated at the same load, and fracture analysis would be applied to determine

the growth of the initial failure and to model the propagation of the damage.

The mixed mode fracture criterion that was adopted to predict the initiation

of crack propagation can be expressed as [42, 54, 53]:

a 8
Gr G
—_— + =F 3.15
(GIC) (Guc) ! (3.13)

where G1c and Gyjc are the critical strain energy release rates corresponding to

Mode I and Mode II fracture, respectively. It was assumed that the values of G¢c
and Gyrc did not change with delamination length. @ =1 and § = 1 were selected
for this study because they were found to provide the best fit to the previous
experiments [42).

The onset of crack growth was predicted when the value of E; was equal to or
greater than unity (Eq 2> 1). The strain energy release rates G; and Gy for Mode

I and Mode II fractures, respectively, could be expressed based on the linear elastic
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fracture mechanics as

R
2Aa

Aa—o

Aa
Gr= lim { / [uf(a + Aa) —u;(a+ Aa)] onn ds} (3.16.a)

Aa
G = Al‘ilgo {2;(1 /o [u;"(a +Aa) —u, (a+ Aa)] Oan ds} (3.16.b)

where Aa is the crack extension, n and s denote normal and sliding direction, onn
and o,, are the stresses at the crack tip associated with a delamination length of
a, and u}, u}, and u], u are the displacements of the upper and lower surfaces

of the delamination associated with a delamination length of a + Aa respectively.

§3.3 FINITE ELEMENT MODELING

A nonlinear finite element code was developed for implementing the proposed
model. The laminate was discretized by 4-node bilinear elements into n.; element
domains with n,, nodal points using isoparametric 4-node bilinear rectangular el-
ements as shown.

The displacement field is assumed to be in the form

=) N.u, (3.17)

where n., is the number of nodes for one element, N, is the displacement shape
(interpolation) function associated with the local node number a, and u, is the
nodal displacement vector at the local node number a. The displacement shape

functions in the parent domain with coordinates p and ¢ are expressed as

N(p,g) = 3 (1+2pa) (14 g40) (318)

where a = 1 — 4 and there is no summation on a.
Now that both contact bodies are discretized by finite elements, any one of

the contact bodies can be assigned as the contactor and the other will be treated
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as the target. The nodal points on the contact region of the contactor are called
“slave nodes,” and those on the surface of the target are called “master nodes”. The
elements containing the master nodes are called “master elements,” and the those
containing the slave nodes are called “slave elements”. The master-slave definition
is shown in Figure. 3.4.

In the current formulation, the Lagrange multiplier distribution is assumed to
be constant for a slave node associated with a master element along a crack or
delamination interface. Thus, the extra term in the total potential energy due to

the presence of Lagrange multipliers can be expressed as

/r Angdl =3 / ()i (3.19)

i=1
where n, is the total number of slave nodes and therefore, the number of contact
elements on the contact surfaces. Because of the constant contact pressure assump-
tion for each contact element and the unique g for each contact element, the above

equation can be written as

/ Angdl = E (AN); gill (3.20)
r

i=1
where [; is the length of the i-th contact element. In the discrete space, the sum
of the contact pressure (An!), must be carried by slave node s, which could be
imagined as a nodal force with a magnitude of (An!),. Thus, the extra term in the
total potential energy due to the presence of Lagrange multipliers can be expressed
as
n,

/ Awadl =3 hia (3:21)

where the A; (= (Anl),;) at LHS of Eq. (3.21) is interpreted as the Lagrange multi-

plier for a slave node along some matrix crack or delamination interface.
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Master Nodes
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Figure 3.4 Description of master and slave surfaces for the contact problem in

two-dimensional space.
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3.3.1 Variational Formulation of the Discrete Problem

Accordingly, Eq. (3.6) can be written in its discrete form as

(u,)) = (u) + A\Tg (3.22)

where u is the vector of nodal point displacements in discrete space, g the vector of
nodal gaps, and A the vector of nodal contact forces. For simplicity, the subscript N
is omitted for A. In addition, II(u) designates the total potential energy associated

with the bodies in contact. The discrete form of the virtual work principle results

n
o o1 o1 oIl g '
—_— —— — = (— TS Tsx = )
3 a,\6u+ Pa (6u +A a“)6u+g 6A=0 (3.23)
Therefore, the nonlinear equilibrium equations for the discrete system are ob-
tained as
A ey,
Ou Ou (3.24)
g=0
In the framework of the finite element method, the term %% can be replaced by
o1
a_u = Pint — Rext (3'25)

where Pjn¢ is the vector of internal nodal forces resulting from the element stresses
(corresponding to the strain energy part in the total poential energy II), and Rext
is the vector of nodal forces due to external loading. Term /\Tgﬁ can be replaced
by

— '2

where the F. is the vector of contact nodal forces due to the contribution of contact

nodes.
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Combining Eq. (3.24), Eq. (3.25), and Eq. (3.26) results in

Pint + Fc = R-exta
(3.27)

g=0

The first equation represents a weak form of equilibrium equation. The second
indicates that the constraints are exactly enforced here. It is shown that A represents
the vector of contact forces, which are distributed according to the matrix gﬁ in
the associated nodes.

In general, due to the finite deformation and the contact constraints, the sys-
tem of equations is nonlinear. Numerical techniques such as the Newton-Raphson
method have been widely used to solve these nonlinear equations [70-74).

By applying the Newton-Raphson technique, the following linearized equations

are obtained:

i[Pim: + Fc]du + i[pint + Fc]d/\ = Rext - (Pint + Fc),
——g-du =-g

Recalling that P;p, is the function of u only and F is the function of u and

A, the above equation can be written as

(2 (Pine) + (Pl + [ 2 (Fe)ld = Rese = (Pios + Eo),

-a_g-du L (3.29)
T8
The above equations can be written in matrix form:
(K + Kc)du + Hd) = R'ext - (Pint + Fc),
(3.30)
HTdu= g

where HT is the transpose of H.
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In this matrix formulation, K is the classical tangent stiffness matrix which
is obtained without considering the contact between crack interfaces, and is the
standard practice in finite element formulation [70-74] and therefore omitted here.

F. is the contact residual force vector and defined as

_ 98
Fe=)z2 (3.31)

K. is the contribution of the contact conditions to the tangent stiffness matrix,

which guarantees the best approximation to the actual response. It is defined as

oF,
K. = = (3.32)

H is a vector that sets up the distribution of contact forces due to the contact

and is defined as

_ 9
H=z2 (3.33)

In the following section, it is convenient to refer the equations to an element
coming in contact with one node on the other body, forming one contact element.
Such an element provides one gap g and one Lagrange multiplier A and has /N nodal
points. Subsequently, capital letter indices are used here to identify quantities which
are related to the element nodal points. Moreover, for repeated indices the summa-
tion convention of tensor calculus holds. The corresponding form of Eq. (3.30) for

one contact element is

oPM d , 9 dg
{ auNt + ’\auN(auM)}duN + b‘ﬁd'\ =RM, - (P} +F), (3.34)
dg N _ .
ouVN du™ = —g
where the contact residual force of the element is
£, 9 (3.35)

~ "ouM
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The two terms in parentheses form the tangent stiffness matrix of the element.
The first term is the classical tangent stiffness matrix for undamaged composites.
The derivation of the matrix is available in the literature related to finite element
methods [70-74]. The second term adding to the contribution due to contact has

the following form:

_ o | 0  Og
~ QuN _/\auN(auM)

ke (3.36)

The correct derivation of contact element stiffness matrix k. is important, as
it renders the quadratic convergence of Newton’s method. The coefficient matrix
before the d\ forms the contact force distribution of the associated nodes of the
contact element. The derivations of the contact stiffness matrix k. and the residual

force f. are described in Appendix B.

3.3.2 Finite Element Modeling of Failure

Once the strain and stress distributions in the laminate at each load increment
were calculated, failure criteria were applied to determine the locations of the initial
damage and the applied load corresponding to the initial failure. When intraply or
interply cracking was predicted, it was necessary to insert a crack in remodeling the
finite element grids within and near the cracked area. However, because the location
of the crack was unknown prior to failure and also strongly dependent upon the ply
orientation, it became very difficult to efficiently insert an intraply or interface crack
in the existing mesh and effectively remesh the finite element grids while the ply
orientation and the geometry of the laminate were considered as variables.

Therefore, an efficient and effective technique was developed and implemented
in the finite element mesh generator. The technique used the original finite element
grid system, and preserved the sparseness of the tangent stiffness matrix after failure

occurred. Hence the computational time did not increase substantially. When a
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crack was predicted, it was assumed that the location of the crack could be assigned
as an approximation to the nearest element boundary. Accordingly, a matrix crack
with a length of a ply group thickness would be generated along the existing element
interfaces of the failed ply group. Similarly, for a delamination crack, the interfacial
crack would be introduced at the boundary of the elements along the predetermined

ply interface.

Based on this approach, each node was systematically assigned four node num-
bers (rather than one) in the global nodal numbering system. If no damage occurred,
the four nodes were assigned the same equation numbers. Once a crack was gen-
erated, depending upon the type of crack and the location of the node, each node
along the cracked surfaces could be generated with its own nodal number, up to
four individual nodes. Accordingly, additional crack surfaces could be generated by
splitting the nodes at the desired locations. Hence, no changes in the mesh were
required for the post-failure analysis. Details of the mesh remodeling procedure are

given in Appendix A.

Once a crack was introduced into the composite, the surface condition of the
crack during the subsequent loading had to be modeled properly to prevent over-
lapping of the crack surfaces. It was assumed that once matrix cracking occurred,
the crack would fully extend to the neighboring interfaces of plies with ply orien-
tations differing from the cracked ply group and would branch into a delamination
crack along each interface. In order to apply fracture mechanics for determining the
growth of the matrix cracking-induced delamination, an initial delamination crack
along the interface perpendicular to the matrix crack was generated at the tips of
the existing matrix crack. Thus, the strain energy release rates at the delamination

tips along the interface could be determined based on the crack closure technique
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(Egs. 3.16) [48] as follows:

. 1
G~ Al}fﬂo {EFnM(unD - unM)}
(3.37)

G~ lim {igﬂu(u.o - u.M)}
where M and N are the nodes at the crack tip before the crack advances an amount
of Aa, F,pm and F,ps are the nodal forces that keep the nodes M and N together,
and Aa is chosen to be the length of the element ahead of the crack tip along the
delamination interface.

It was assumed that the matrix cracking-induced delamination crack would
propagate if the calculated strain energy release rates G; and Gy satisfied the
crack growth criterion of Eq. (3.15). Subsequently, the delamination crack would
advance by one element size, and the mesh with additional crack surfaces would
require remodeling following the procedures given in Appendix A. Accordingly,
Eq. (3.27) needed to be resolved with additional crack surfaces. The above numerical
procedures would need to be continued until either the composite could not sustain
any additional load or the calculated results would be beyond the scope of the

present interest.

§3.4 Verification

In order to verify the model, numerical calculations based on the model were
compared with the available analytical and experimental results. Experiments were

also performed during the investigation to further validate the model.

3.4.1 Comparison with Existing Results

A DCB Specimen under a Line Load

Numerical calculations were performed to determine the strain energy release
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rates of a double cantilever beam subjected to a constant tip displacement under
three different loading conditions. The results of the calculations are presented in
Figure 3.5.

Figure 3.5 shows the strain energy release rate calculations for Mode I, Mode
II, and mixed mode fracture, as a function of the crack length under a constant
applied displacement at the crack tip. The solid lines represent the results of the
beam theory and the symbols are the predictions based on the present analysis. The
predictions agreed very well with the classical beam theory [45]. For mixed mode
fracture, G; and Gj were calculated for the model and are presented in Figure 3.5,

in addition to the total strain energy release rate G = Gr + Gy.
A Unidirectional Composite under Three-Point Bending

Calculations were made to compare the prediction with the test data (Fig-
ure 3.6) measured from experiments in which a unidirectional composite beam con-
taining a central delamination was tested under three-point bending (by Maikuma
et al. [43]). The Strain energy release rates with respect to the crack length were
measured. The open symbols represent the test data, and the solid line represents
the predictions from the model. The predictions agreed with the test data reason-

ably well.
[90,,/0,,/90,,] Specimens with a Surface Crack

Comparisons were also made between the predictions based on the model and
the test data measured by Sun et al. [46] on a simply supported [90s/05/905] com-
posite beam containing an interface delamination induced by a surface matrix crack
(bending crack) located at the center of the bottom ply. The test was performed
to evaluate the ~ffect of a bending crack on the strain energy release rates at the
tip of a delamination. Figure 3.7 presents the comparison of strain energy release

rates between the calculated rates based on the model and those given in [46]. A
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Figure 3.5 Strain energy release rates of an isotropic beam as a function of the
crack length. Comparison is between the predictions based on the

present model and the calculations based on the classical beam theory

[45). a) Mode I; b) Mode II; and c) Mixed Mode.
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Figure 3.6 Comparison of the strain energy release rate of an AS4/2220-3 [024]
composite beam between the data taken from [43] and the predictions

based on the present model.
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fairly good agreement was found. It was noticed that Mode I was the dominant
mode for the crack growth. Figure 3.8 shows the relationship between the critical
load associated with the onset of the delamination growth and the delamination
length for the laminate under a three point bending test. The rectangular symbol
represents the test data. The solid line is the prediction. The prediction was based
on the assumption that the critical strain energy release rates G;c and Grjc were
constant for the given material and independent of the delamination length. Again,
the predictions agreed with the data very well.

The numerical simulations of the deformed configurations of a [905/04], com-
posite specimen with a bending crack as a function of the applied load are pre-
sented in Figure 3.9. The calculated load and the interface delamination versus
the displacement of the load head were also calculated and are presented in Fig-
ure 3.10. Clearly, the interfacial delamination induced by the bending crack grew
gradually with the increasing applied load or displacement, indicating a very stable
crack growth. The strain energy release rates were calculated and are presented
in Figure 3.11, which shows again that Mode I was the dominant mode during

delamination growth.
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Figure 3.7 Strain energy release rate of an AS4/3401-6 [905/05/90s) composite
beam as a function of the delamination length induced by a surface
matrix crack. Comparison is between the predictions based on the

present model and the calculations given in [46].
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Figure 3.8 Comparison between the measured (46] and the predicted critical loads

of an AS4/3401-6 [905/05/905] composite beam as a function of the
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Figure 3.9 Numerical simulations of the deformed configurations of a T300/976
[908/04], composite beamn containing an existing matrix crack and

subjected to a transverse concentrated line load at various loading
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load. (Above): The calculated applied load as a function of the load
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Table 3-1
Material properties used in the calculations for comparisons.
Aluminum  T300/976 AS4/3501-6 AS4/2220-3
E,, (msi) 10.0 17.6 17.4 17.84
E,, (msi) 10.0 1.41 1.43 1.61
E,, (msi) 10.0 1.41 1.43 1.61
Vzy 0.3 0.29 0.30 0.29
Viz 0.3 0.29 0.30 0.29
Vy: 0.3 0.40 0.30 0.40
Gy, (msi) 3.846 0.81 0.76 0.908
G::, (msi) 3.846 0.81 0.76 0.908
Gy, (msi) 3.846 0.50 0.76 0.623
Gi., (Ibf/in) n/a 0.50 0.47 n/a
Gri., (Ibf/in) n/a 1.80 1.88 2.80

For the materials T300/976, AS4/3501-6 and AS4/2220-3, it is necessary to
specify the direction in which the fibers of each lamina are aligned. The subscript
z denotes the fiber or 0deg direction. The subscript y denotes the direction per-
pendicular to the 0 deg direction (transverse or 90 deg direction). The subscript 2
denotes the out-of-plane direction.
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3.4.2 Comparison with the Current Test Data

Tests were also performed during the investigation, and the results of the test
data were utilized to substantiate the model. The major focus of the tests was
concentrated on damage in the cross-ply laminates [0,,/90,], containing inner 90°
plies and outer 0° plies. For [90,,/0,], composites, tests have been conducted by
Sun et al. [46] and the model was verified in the previous section.

T300/976 Graphite/Epoxy prepregs were selected for fabricating both flat and
cylindrical test panels, which were cured under a standard cure cycle given in [32)].
The panels were then sliced into specimens. The dimensions and the ply orienta-
tions of the specimens are listed in Table 3-2. The material properties for Fiberite
T300/976 are shown in Table 3-3. Each specimen was X-rayed to examine any inter-
nal damage resulting from manufacturing or cutting. No apparent sign of damage
was found in the X-radiographs of the test specimens.

Each specimen was clamped firmly at both ends during the test. The fixtures
fabricated specifically for testing of flat and curved specimens are shown in Fig-
ure 3.12. A line-nosed cylindrical load head was applied downward at the centerline
of the specimen. The configuration of the test setup is also given in Figure 3.12.
An MTS machine was utilized for all the tests. The load head speed was 0.0006
in/min based on displacement-controlled loading. A strain gage was mounted at
the center of each specimen. The strain gage reading or the displacement reading as
a function of the applied load was recorded during the entire test until the applied

load dropped substantially, as a result of internal damage in the specimens.
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Figure 3.12 Schematics of the testing fixtures. (Above): The testing fixture for

flat panels. (Below): The testing fixture for cylindrical panels.
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Table 3-2
Ply orientations and geometry of test specimens.
Flat Panels L (in) W (in) H (in) No. of Specimens
[06/903], 1.5 0.955 0.098 4
[04/904], 1.5 1.030  0.0896 4
[04/903/0,], 1.5 0.920  0.098 5
[02/90,/03/90], 1.5 0.930  0.098 5
Curved Panels 2a (degree) W(in) H(in) No. of Specimens
[06/903], 81 0.970 0.098 5
[08/902], 81 0.930  0.110 5

L represents the span length. W represents the plate width. H represents the
plate thickness. 2a represents the arc angle for curved panels. The radius for the
curved panels is 2.86 in.
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Table 3-3

Material properties for Fiberite T300/976.

Material Property

Longitudinal Young’s modulus, E,
Transverse Young’s modulus, E,
Out-of-plane Young’s modulus, E,-
Poisson’s ratio, vz,

Poisson’s ratio, v,

Poisson’s ratio, vy,

In-plane shear modulus, G,
Out-of-plane shear modulus, G,

Out-of-plane shear modulus, G

Longitudinal thermal expansion coefficient, a;,,

Transverse thermal expansion coefficient, a,,

Longitudinal tensile strength, X,
Longitudinal compressive strength, X,
Transverse tensile strength, Y;
Transverse compressive strength, Y,

Longitudinal shear strength (cross ply), Scp

Critical strain energy release rate for Mode 1, G,

Critical strain energy release rate for Mode II, G/,

Value
17.6
141
1.41
0.29
0.29
0.40
0.81
0.81
0.50

0.3
16.0

220
231
6.46
36.7
15.5

0.50
1.80

Units
msi
msi

msi

msi

msi

1bf/in
1bf/in
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Flat Panels

The test data of flat panels with [06/903], and [04/904], ply orientations are
shown in Figure 3.13 and Figure 3.14. The open circles shown in these figures are
the test data. As can be seen from the figures, the material responses between the
applied load and the measured strains were quite linear until the maximum load
was reached, after which the load dropped sharply. Below the maximum load, no
visual damage was observed during the test. However, significant damage including
multiple matrix cracks and delaminations was found immediately after the load
drop, indicating that the damage occurrence and growth were not progressive, but
unstable and catastrophic. Apparently, once the damage initiated, it immediately
propagated extensively inside the material and resulted in catastrophic failure. A
photograph of a close view of the side of a damaged specimen near the center regioﬁ

is presented in Figure 3.15.

Numerical simulations of the test results are also shown in Figure 3.13 and
Figure 3.14, represented in the same figures by the solid lines. The calculated
load-strain relationships matched with the data very well up to the final failure
load. Initial failure due to matrix cracking in the central 90° plies was predicted
at the failure load in both cases. The calculated load dropped significantly due
to an extensive delamination which occurred at the interface between the bottom
ply group and the central 90° plies, resulting from the matrix cracks. Following
the ca.lculatidn, once the matrix cracks initiated, they immediately produced an
interface delamination which propagated instantly to the boundaries. The numerical
simulations of the deformed configurations of a [04/904], composite specimen as a
function of the applied load are presented in sequence in Figure 3.16. It is noted
that additional matrix cracking was also predicted at other locations within the

central 90° plies during the unstable delamination propagation. The calculated
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load and the lower interface delamination versus the displacement of the load head
were also calculated and are presented in Figure 3.17. Clearly, the lower interface
delamination grew immediately to the boundaries directly after the critical load was
reached.

Cylindrical Panels

Figure 3.18 and Figure 3.19 show respectively the load-deflection relationships
of [06/903], and [0s/90;], cylindrical panels subjected to concentrated central line
loading. Symbols in both figures represent the test data, and the solid lines are
the predictions based on the model. Each symbol corresponds to a single specimen.
Both types of specimens resulted in the same type of damage mode: a pair of shear
cracks occurring in the 90 degree plies, leading to an upper and lower interface
delamination along the 0/90 interfaces. A photograph of a side view of a [0¢/ 903];
specimen after testing is presented in Figure 3.15. The type of damage was basically
similar to that observed in [0/90], flat composites. However, the overall extent of the
delamination along the bottom 0/90 interface in the cylindrical panels was smaller
than that of corresponding flat panels.

The predicted curves shown in Figure 3.18 and Figure 3.19 agreed with the test
data very well from the initial loading to final collapse. As predicted, the damage
was initiated from matrix cracking in 90 degree plies inside the laminates and the
interface delaminations were generated from the matrix cracking. The predicted
locations of the initial matrix cracks and the extent of the delamination along the
bottom 0/90 interface in the cylindrical panels as compared to test measurements

are presented in Table 3-4.

A typical deformed configuration of a segment of a [0¢/903], cylindrical compos-
ite corresponding to the final failure load is presented in Figure 3.20. A significant

amount of slip deformation can be seen between the upper and lower surfaces of the
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Figure 3.13 Comparison between the measured and the calculated load-strain re-
lationship of a T300/976 [0s/903), composite beam subjected to a

concentrated line load.
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Figure 3.14 Comparison between the measured and the calculated load-strain re-
lationship of a T300/976 [04/904], composite beam subjected to a

concentrated line load.
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Figure 3.15 Photographs of a sideview of a tested [04/904], flat panel and a [06/903],

curved panel near the loading area.
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Figure 3.17 The calculated response of a T300/976 [04/904], composite beam sub-
jected to a transverse concentrated line load. (Above): The calculated
applied load as a function of the load head displacement. (Below): The
extent of the delamination induced by the matrix crack as a function

of the load head displacement.
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Table 3-4
Matrix crack locations and delamination extensions for curved panels.
(R = 2.86 in, 2a = 81%)
Layups a./a(model) a./a(data) ag/a(model) ay/a(data)
[06/903], 5.3 8.57 42 50.5
[04/904], 6 6.7 46.7 53.3

All the numbers in the table are in terms of percent. a. is the half arc angle
corresponding to the critical matrix crack location, a,s the half arc angle corre-
sponding to the final delamination extension location, and a the half arc angle for
the curved panel.
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delamination at the lower interface delamination. Again, the delamination prop-
agation was very unstable. The delamination immediately propagated away from
the loading area and led to the collapse of the structure. It was calculated that the
Mode II shear fracture dominated the delamination propagation in cylindrical pan-
els. Accordingly, it seems that the strain energy release rate Gjc is more critical

in cylindrical panels than in flat panels for governing delamination propagation.

§3.5 Discussion

Based on the extensive analytical and experimental study, matrix cracking is
seen to be the initial failure mode for the cross-ply laminates considered. Delamina-
tion was induced by these matrix cracks along the interfaces attached to the matrix
cracks. For 90° plies on the bottom surface, a matrix crack could be produced due
to excessive transverse tensile stresses in the 90° plies. These types of cracks are
referred to as bending cracks. For the laminates containing 90° inner plies, ma-
trix failure was due primarily due to transverse interlaminar shear stresses, which
reached the maximun at the midplane of the laminate. This type of inner matrix
cracking is referred to as a shear crack. The location of the shear cracks is always a
distance away from the loading point, whereas the bending crack appears directly

beneath the loading point.

Accordingly, depending upon the sequence of the ply orientation and the thick-
ness of the l@inate, either bending or shear cracks could occur, earlier than the
other. For thick laminates, interlaminar shear stresses could dominate the stress
field, leading to shear cracking. However, for thin laminates, bending cracks could
appear earlier because of the bending deformation of the plate. The growth of the

delamination induced by the shear cracks is apparently very unstable and catas-

trophic, whereas the bending crack induced delamination grows stably and progres-
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Figure 3.18 Comparison between the measured and the calculated load-strain re-
lationship of a T300/976 [06/903),s curved composite beam subjected

to a concentrated line load.
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Figure 3.19 Comparison between the measured and the calculated load-strain re-
lationship of a T300/976 [0s/902], curved composite beam subjected

to a concentrated line load.
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T300/976, [06/903)s, R = 2.86 in, 20 = 81°
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Figure 3.20 The calculated deformed configuration of a T300/976 [06/903], curved

composite beam corresponding to final failure load.
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Figure 3.22 The predicted failure load of curved laminated beams as a function of

curvature.
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sively, and is proportional to the applied load. The calculations show that mixed
mode fracture dominates the onset of the shear crack induced delamination growth
while Mode I fracture dominates the onset of the bending crack induced delami-
nation. Once the delamination propagates, Mode I fracture continues to control
the growth of bending crack-induced delaminations, but Mode II fracture becomes
increasingly important for the growth of the shear crack induced delaminations.
Apparently, the damage mode resulting from transverse concentrated line loads
strongly depends on the ply orientation, but it is not sensitive to the change of
curvature. However, the response and the extent of damage of the composites are
sensitive to both ply orientation and geometry of the structures. For instance,
Figure 3.21 shows the predicted initial failure load corresponding to the initiation
of matrix cracking for different stacking sequences of flat laminates. Figure 3.22
shows the effect of curvature on the initial and final failure loads of cylindrical
[06/903], composite panels. Clearly, ply orientation influences the initial and final

failure loads of the structures subjected to transversely concentrated loading.

§3.6 Concluding Remarks

In this study, a 2-D analytical model has been developed for simulating the
response of laminated composites subjected to quasi-static transverse concentrated
line loads. Experiments were also performed to verify the analysis. Based on
the study, the following remarks can be made for the damage growth in cross-ply
composites resulting from transverse concentrated line loads:

1. Intraply matrix cracking imtiates the damage in laminated composites.

2. Intraply matrix cracking triggers delamination.

3. Delamination growth induced by intraply bending cracks is stable and progres-

sive.
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4.

Delamination growth induced by intraply shear cracks is very unstable and
catastrophic.

Mixed mode fracture dominates the onset of shear crack induced delamination
while Mode I fracture dominates the onset of bending crack induced delamina-
tion.

The growth of the delamination induced by a bending crack is governed by
Mode I fracture.

The growth of the delamination induced by shear cracks depends strongly on
the G;c value.

Both stacking sequence and curvature affect the response and the extent of the

damage in composites.




Chapter 4

Damage Induced by a Spherical Indenter

§4.1 Statement of Problem

The objective of this study was to fundamentally understand delamination
propagation behavior and the effect of matrix cracking on its growth in cross-ply
composites resulting from a transverse concentrated load. Therefore, only [0,,,/90,],
composite plates were considered. The rectangular plates could be simply supported
or clamped on any one of the edges and subjected to a transverse quasi-static

concentrated load by a spherical indenter.

In order to achieve the objective, the plates were assumed to contain a pre-
existing small delamination located at the central loading area on the second 90/0
interface directly beneath the indenter. Two types of matrix cracking in conjunction
with the delamination were considered in the study: a bending crack and a pair of
shear cracks. Accordingly, for a given loading and boundary condition, four types
of internal damage modes were studied: 1) delamination with no matrix cracks; 2)
delamination induced by a bending crack; 3) delamination induced by shear cracks;
and 4) delamination induced by both a bending crack and shear cracks, as shown

in Figure 4.1.

60
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Figure 4.1 Four types of damage modes considered in this analysis: 1) delami-
nation with no matrix cracks; 2) delamination induced by a bending
crack; 3) delamination induced by shear cracks; and 4) delamination

induced by both a bending crack and shear cracks.



_ Chapter 4: Damage Induced by a Spherical Indenter 62
§4.2 Analysis

The analytical model proposed for describing the behavior of laminated com-
posite panels consists of three portions: a stress analysis, a contact analysis, and a
failure analysis. The stress analysis is based on the large deformation theory sim-
ilar to the one presented in Chapter 3, except that the displacement field is now

three-dimensional. Therefore, the theory will not be elaborated in this chapter.

4.2.1 Contact Analysis

Two types of contact are involved: the rigid-elastic contact between the inden-
ter and the plate, and the elastic-elastic contact between the cracked/delaminated
interfaces, as shown in Figure 4.2. The local indentation resulting from a spheri-
cal indenter is very complicated and three-dimensional. The local indentation could
significantly affect the delamination growth and its interface deformation, especially
when the delamination is small. The actual contact between the spherical indenter
and the laminate had to be simulated. For simplicity, only the elastic-elastic contact
is presented in this section. The rigid-elastic contact can be treated as a special
case of the elastic-elastic contact. The contributions of more than one contact pair

can be easily handled as the formulation is general for contact between multiple

bodies.

Several methods exist to implement the contact constraints. The most popular
choices are the Lagrange multiplier method and the penalty method. The former
has the advantage of enforcing the exact constraints, but induces additional param-
eters which cause an increase of the finite element matrix bandwidth and therefore
substantially enlarge the overall size of the equation system to be solved [56]. This
method was adopted for the study of damage induced by a cylindrical indenter for

analyzing the interaction between matrix cracking and delamination. However, the




Chapter 4: Damage Induced by a Spherical Indenter 63

Contact Area

Indenter
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Figure 4.2 Contact problem associated with a delaminated laminate subjected to

an indenter.
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application of this method to three dimensions becomes extremely costly. Although
the penalty method has the advantage of not requiring additional equations, it is
very sensitive to the choice of a penalty parameter, which can possibly lead to
ill-conditioning when the value of penalty parameter increases [56, 62, 66)].

Therefore, in this study, an augmented Lagrangian method was adopted. It
was originally proposed by Hestenes [57] and Powell [58] in studying mathemati-
cal programming problems subject to equality constraints. It has been shown to
provide important advantages over the more traditional Lagrange multiplier and
penalty methods. The applicability of this method to mathematical programming
problems subject to inequality constraints is also well documented by Rockafellar
[59] and others. Detailed mathematical discussions can be found in [56]. More re-
cently, this technique has been successfully applied to various constrained mechanics
problems such as incompressible finite deformation elasticity [60], and contact prob-
lems in two dimensions [61, 66]. The augmented Lagrangian techniques have been
known to provide almost exact enforcement of constraints while using finite penalty
parameters, avoiding the ill-conditioning,.

Using the Lagrange multiplier technique, the total potential energy with the

contact constraint conditions can be described as
ﬁ=H+/ANgd1“ (4.1)
r

The variational equations of the laminate subjected to a spherical indenter,
corresponding to the Lagrange multiplier formulation (similar to Egs. (3.8)), can

be described as

5n+/,\N5ng=0,

r (4.2)
/6ANgdP=O
r

where Ay is unknown, which needs to be solved from the above equation. The
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introduction of the Lagrange multiplier Ay could considerably enlarge the system

of equations.

However, the penalty treatment is achieved by the replacement of Ay in Eqs. (4.2)
by eng, where €y is defined as the penalty parameter. It can be observed that as
€N — 00, ¢ — 0 and AN is bounded. However, as exy — oo, the gap g must be zero,

which satisfies the constraint condition.

The variational equation for the penalty method can now be wri‘ten as
SII + / engdgdl =0 (4.3)
r

It is noted that Eq. (4.3) only involves the displacement variables, and no addi-
tional contact force constraint is needed. As a result, Eq. (4.3) does not introduce
additional equations and is extremely attractive for finite element implementations.
However, the constraint condition g > 0 is only satisfied when ey approaches in-
finity, which unfortunately leads to ill-conditioning. In order to solve Eq. (4.3),
€N is chosen as a large finite constant in practice without inducing ill-conditioning.
Therefore, some overlapping between contact surfaces may occur. In the present de-
lamination contact problem, the overlapping between the contact surfaces needed
to be minimized. These considerations led to the development of the method of

augmented Lagrangians.

In the method of augmented Lagrangians, the Ay is initially chosen to be
an arbitrary constant. If this constant is not the correct Lagrange multiplier, the
contact constraint is not satisfied and minimization of the total potential energy of
Eq. (4.1) does not lead to the equation of equilibrium. Therefore, from a penalty
function viewpoint, the total potential energy represented by Eq. (4.1) needs to be

further penalized by the following modified functional:
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1‘1=n+/ A%"gdr+/ L ng?dr (4.4)
T r 2

where /\S\’,‘) < 0 denotes the fixed estimate of the correct Axy. The superscript k
indicates that the search for the correct Ay is an iterative process. The updated

formula is

AGH = (A + eng) (4.5)

Therefore, the variational equation corresponding to Eq. (4.4) can be derived

ST1 + / (A + eng) 6gdT =0 (4.6)
r

It is noted that the term ( /\5\’,‘) + eng) plays the role of the Lagrange multiplier
An. If An is the correct multiplier, then ¢ = 0 on I Thus, in the case where
the multipliers are correct, Eq. (4.6) achieves exactly the same form as the first of

Eqs. (4.2), making it an exact penalization.

It is important tc notice that Eq. (4.6) is a nonlinear equation due to the
contact conditions and geometric nonlinearity. In general, then, it will be necessary
to solve Eq. (4.6) in an iterative manner. In practice, en is chosen to be as large as
practically possible without inducing ill-conditioning. The advantage of the current
treatment over the penalty method is that satisfaction of the constraints can be
improved even if ex is of relatively modest value through repeated application of
the augmentation procedure. Since these augmentations only change /\(,5), which
is fixed with regard to solution of Eq. (4.6), the ill-conditioning problem usually

associated with the penalty method is mediated or eliminated.
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4.2.2 Failure Analysis

The initiation of delamination growth (onset of delamination growth) was pre-
dicted based on linear elastic fracture mechanics. The well-known virtual crack
closure technique [52] served as the basis for the strain-energy release rate calcu-
lation. This procedure determines Mode I, Mode II, and Mode III strain energy
release rates from the energy required to close the delamination over a small area.
The strain energy release rates Gy, Gy, and Gy for Mode I, Mode II, and Mode

III fracture respectively, can be expressed as [75]

: 1 A, -
c,_Alﬁo{m / [uf(A+AA)—uj(A+A44)] a,,,,dA} (4.7.0)

. 1 AA . _ '

- 1 AA _

where AA is the crack extension area; n, s,t form a local coordinate system which
are out-of-plane normal, in-plane normal, and in-plane tangent respectively; ona,
Oqn, and 04, are the stresses at the crack front associated with a crack size of A; and
u}t, ut, uf and u], uy, u; are the displacements of the upper and lower surfaces
of the crack associated with a crack size of A + A A respectively.

Therefore, at any point on the delamination front, strain energy release rates
can be calculated. Since the delamination growth can be attributed to a mixed mode

fracture, the criterion for determining the initiation of the delamination growth was

Gl)a (Gn)ﬁ (GIII )7
+ + =F 4.8
(Glc Gri. Griic ¢ (4.8)

for any point on the delamination front. Here, G-, Gri., and Gysj. are the

selected as [75-78]

critical strain energy release rates corresponding to Mode I, Mode II, and Mode III
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fracture, respectively. It was assumed that G;., Gyj., and G, did not change
with delamination size. Based on the two-dimensional study in this thesis and [42],
a=1,8=1, and ¥ = 1 were selected for this study, because they were found
to provide the best fit to the experiments in two dimensions. It was assumed that
Gir11c = G11. [67], because the value of Gy has not been reported in the literature.
Accordingly, delamination would start to propagate when E4 > 1 at any point on

the delamination front.

§4.3 Finite Element Implementation of the Formulation

The laminate was discretized by 8-node isoparametric brick elements into n
element domains with n,, nodal points.

The displacement field within an element was assumed to be in the form

u= Ngu, (4.9)

a=1
where N, is the displacement shape (interpolation) function associated with the
local nodal number a, and u, is the nodal displacement vector at node number A.
The displacement shape functions N, in the local coordinates p, q, and r have the

following expression:

Na(p,q,7) = = (1 + ppa) (1 4+ qga) (1 +774) (4.10)

00| +=

where a = 1 — 8 and there is no summation on a.

Both the indenter and the laminate were discretized by finite numbers of ele-
ments, and the master-slave definition is the same as given in the 2-D study. The
indenter was treated as the master surface while the top of the laminate was treated
as the slave surface. For delamination surfaces, both upper and lower surfaces may

be treated as slave and master surfaces. It was again assumed that the contact pres-
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sure on each master element was constant. Therefore, Eq. (3.21) and its associated

arguments still applied.

4.3.1 Variational Formulation of the Discrete Problem

The finite element formulation employs the modified total potential energy

(Eq. (4.4)) in its discrete form. Thefore, the following functional is obtained
M(u) =(u)+ \Tg + %eng (4.11)

where the components of vector A are assumed to be a fixed estimate of the correct
Lagrange multiplier vector and need to be updated following the formula of Eq. (4.5)
in a vector form. The focus here is on the contribution of the contact constraints due
to cracked/delaminated interfaces. The discrete form of the virtual work principle

can be derived from Eq. (4.4) and has the following form:
on Tag
(au +1 %)w =0 (4.12)

imagined as the approximate contact force vector. The ¢ will be the correct contact
force vector if the gap vector g is essentially zero. It is reiterated that A is a constant
vector in the solution of Eq. (4.12). Therefore, the nonlinear equilibrium equations

for the discrete system can be obtained as

ol
i tT% -0 (4.13)

In the framework of the finite element method, the term 4 can be replaced by
P,..— R,.,, defined in the same way as in the 2-D study. The term tT§§ can be
replaced by F., which is a contact force vector. Therefore the following equation is

obtained:

Pint + Fc = Rext (4-14)
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The equation represents a weak form of the equilibrium equation in the framework
of Lagrangian augmentation technique. It is shown that ¢ represents the vector of
contact forces, which are distributed according to the matrix gﬁ to the associated
nodes of the contact element.

In general, due to the finite deformation and the contact constraints, the sys-
tem of equations is nonlinear and therefore needs to be solved iteratively by the
Newton-Raphson method [70-74]. By applying the Newton-Raphson technique,

the following linearized equation is obtained:
7]
7o Fint + FeJdu = Rext — (Pine + Fe) (4.15)

Recalling that Pj,¢ and F are the function of u only, the above equation can

be written as

(- (Piow) + (P )}du = Ruxe = (Pine + F) (416)
Or
(K + Ke)du = Rext — (Pint + Fe) (4.17)

where K (= & (Pint)) is the classical tangent stiffness matrix which can be obtained
without considering the contact constraint conditions. F. is the contact residual

force vector and defined as

_ .08
F. = t=o (4.18)

and K. is the contribution of the contact conditions to the tangent stiffness matrix,

which guarantees the best approximation to the actual response. It is defined as

OF.
du

K. = (4.19)
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For convenience, the above matrices will be derived on the basis of an element
coming in contact with one node on the other body, forming one contact element.
Such an element provides one gap g and one estimated contact force magnitude ¢,
and has N nodal points. Subsequently, capital letter indices (N and M) are used
here to identify quantities which are related to the element nodal points. Moreover,
for repeated indices the summation convention of tensor calculus holds. The contact

residual force of an element is

0
fo=tzz (4.20)

where t = A +¢€g and ) is a constant Lagrange multiplier in some step. The stiffness

contribution due to contact has the following form

of. _ _ :
ke = ouN auN [t auM] ou N[(’\ + fg) ] (4.21)
or
or
_.08 %8
ke = ‘BuN BuM 6uN ( 6uM) (4.23)

The corresponding form of Eq. (4.16) for one contact element is

oPM

dg 0 0
(T e 00 00 4 00 (20 yjau® = RY, - (P +FY) (420

The three terms in parentheses form the tangent stiffness matrix of the element.
The first term is the classical tangent stiffness matrix for undamaged composites.
The derivation of the matrix is available in the literature related to finite element

methods [70-74].
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The derivation of the contact element stiffness matrix k. is important, as it ren-
ders the quadratic convergence of Newton’s method. The derivation of the contact

stiffness matrix k. and the residual force f. are described in Appendix D.

4.3.2 Mesh Generation

It has been observed experimentally that delaminations in cross-ply composites
due to low-velocity impact or quasi-static indentation loading form ellipsis-like or
peanut-like shapes. Therefore, only delaminations with circular or elliptical shapes
were considered in the analysis, as shown in Figure 4.3, Figure 4.4, Figure 4.5, and

Figure 4.6.

This section describes the technique used for the finite element mesh generation
for the proposed problems. The procedure used for generating the meshes was
similar to the one given by Whitcomb [68). The meshes by Whitcomb were used only
for modeling a delamination in a square laminate without including matrix cracking.
The present meshes work for a rectangular laminate containing a delamination in
conjunction with matrix cracks. The procedure of constructing a typical mesh is

described as follows.

It was assumed that the length of the plate is greater than or equal to its width.
First, a two-dimensional mesh was formed in Y — Z plane, where the delamination
is represented by a line of size b. Here, b is the size of the short axis of the elliptical
delamination. Secondly, this two-dimensional mesh was swept through the space
by a 90° arc around the Z axis to generate a 1/4 cylindrical 3-D mesh. Here, a
circular delamination of radius b was obtained in this cylindrical mesh. The radial
lines were normai to the circumferential lines. Third, the outer part (it can be
more than one surface) was then transformed to obtain a square boundary. The

fourth step was that the inner circle was replaced by a block consisting of brick
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Bending Crack

Delamination

Figure 4.3 A delaminated cross-ply composite with or without a surface matrix

crack and subjected to a transverse load from a spherical indenter.
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Figure 4.4 The coordinate system used in the finite element analysis for a lami-

nate containing a delamination and a bending crack.
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Shear Crack

Bending Crack

Delamination AR:! /

Figure 4.5 A delaminated cross-ply composite containing a pair of internal shear
cracks with or without a surface bending crack and subjected to a

transverse load from a spherical indenter.
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by

Shear Crack

Crack Length

Figure 4.6 The coordinate system used in the finite element analysis for a lam-
inate containing a pair uf shear cracks and one delamination having

two semi-circular or semi-elliptical shapes offset by the internal cracks.
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elements so that only brick elements needed to be used. The fifth step was to apply
a modified elliptical transformation to obtain an elliptical delamination front, while
keeping good spacing for elements near the center. Based on the standard elliptical
transformation, a scale factor was introduced for “stretching” the mesh, for example,

in longitudinal or width (X) direction:

: 2% — b2
X=X( 1+WF—F+1) (4.25)

JX? 2
F= —XT‘;Y,for r>vVX?2+Y? (4.26)

where

and
F=1,forr<VX?+Y? (4.27)

The mesh can be similarly “stretched” in Y direction if b > a. It is easy to show
that when F' = 1, the transformation is the standard elliptical (conformal) mapping.
In the conformal mapping, any two lines which were orthogonal would be kept
orthogonal after the mapping. When F < 1 the mapping is a modified elliptical
mapping, which can produce a more evenly distributed mesh for the mesh within a
circle of radius of r. By choosing the parameter r a little less than the radius of the
delamination front in the cylindrical mesh, the orthogonality was well maintained
in the neighborhood of the delamination front in the elliptical transformation. By
maintaining érthogonality, the calculation of fracture mechanics quantities such as
energy release rates can be greatly simplified.

For modeling the surface crack, it was assumed that the nodes on the crack
surface were free to move and had independent degrees of freedom. Due to symme-
try, only 1/4 laminate was modeled and therefore only one shear crack needed to

be modeled. In meshing the plate with a shear crack, the laminate was divided into
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two blocks, the delaminated block and the solid block, separated by the shear crack
surfaces. The mesh of the delaminated block away from the indenter was formed
first, by the procedure described above. Then, the mesh of the solid block which
was below or near the indenter was generated and attached to the mesh of the first
block. The nodes on both sides of the shear crack were assumed to move freely. A

typical mesh used forthe analysis proposed is shown in Figure 4.7.

4.3.3 Contact Node Search

The general approach to contact in the literature is the slave-master method.
That is, one side of the contact surface is designated as the master surface while the
other is treated as the slave surface. In the finite element method, this practice is
referred to as one-pass and obviously lacks symmetry. In the current delamination
problem where corners and edges exist, and where complicated curvature also exists
during deformation, the lack of symmetry can produce slow convergence or diver-
gence and incorrect solutions. The remedy may be easily achieved by periodically
reversing the designation of the master and slave surfaces. A more sophisticated
approach is adopted here which makes two passes at every time step with each
surface being the master surface on one pass [64]. Taking two passes each load step
doubles the cost of the algorithm. However for many practical problems, a sym-
metric algorithm is much more robust than a conventional unsymmetric algorithm,

making it well worth the additional cost.

In the two-dimensional study of this thesis, a structured finite element mesh
was used, which required less bookkeeping in terms of the contact search. However,
in the current three-dimensional study, an unstructured finite element mesh was

used. It was very challenging to find an economical search algorithm.

In a finite element setting, given the slave node, the problem remaining is to
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Figure 4.7 Description of a typical finite element mesh used in the analysis.
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search for the closest projection onto the master surface. There are three steps to
take for the search. The first step is to determine which master node is closest
to the slave node. The second step is to determine which of the master segments,
having the master node as one of their vertices, is closest to the slave node. The
third step is to determine the closest point of the master segment to the slave node
in terms of £ and 7 in the isoparametric biunit domain. For each slave node, one
contact point can be located. Therefore, the gap g can be determined. Due to the
complexity of the contact search process, the details of these steps are deferred to

Appendix C.
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4.3.4 Numerical Implementation of the Failure Model

The delamination growth model was implemented into a finite element analvsis,
The modified crack closure technique [52] served as the basis for the strain energy
release rate calculation. The physical interpretation of the crack closure technique is
that the amount of work required to close the crack by a short distance determines
the energy release rates Gy, Gy, and Grrr. The crack closure energy involves
products of forces and displacements of elements along the delamination front.

The energy release rate calculation is illustrated for an 8-node brick element
in Figure 4.8 which shows a schematic of the delamination front region. The nodes
of interest for the energy release rate calculations are indicated by the solid circles.
In the finite element mesh, it is advantegeous to use a more regular mesh near thé
delamination front so that a single solution method can be used [52). |

In calculating the crack closure work, it was necessary to calculate the forces
transmitted at the crack tip as well as the crack front relative displacements. The
forces were evaluated by summing up all the nodal forces for all the elements which
were connected to the nodes on the front and whose centroids lay above the delam-
ination plane.

Energy release rate is a measure of the energy per unit area. Hence, the work
must be normalized by the appropriate areas. Unfortunately, there is no simple
or exact way to determine the appropriate areas. Certain approximations must be
made. It was assumed that, for the linear elements, the work associated with the
elements attached to line BE (see Figure 4.8) was proportional to their respective

areas. For radial line BE, the area associated with it was estimated as follows:
1
AA = E(Al + A,) (4.28)

where the physical interpretation was that the weights for the work produced by
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each element were proportional to its area.

As the delamination front in general was not parallel to one of the global
coordinate axes, a local orthogonal coordinate system was defined in which the
forces and relative displacements could be evaluated in terms of the local coordinates
(n,s,t, see Figure 4.8). The local coordinate system had one axis tangent .o the
delamination front, one axis normal to the delamination front, and one axis normal
to the delamination plane. The transformed nodal force vector in the local system

can be evaluated as
F'; = TF; (4.29)

where T is the transformation matrix of rank 3 x3 from the global coordinate system
to local coordinate system. And the components of T are directional cosines of
(shown in Figure 4.8).

Therefore, the energy release rates for Modes I, II, and III can be calculated in

one step:
. 1
GI = Aqurgo{m ::B (u,.Q - unp)} (4.30.a)
. 1
GII= Aljin-}oo{mF;B (u,Q —‘U._,P)} (430b)
. 1
GIII = Ali{l’_!lo{mF:B (th —utp)} (4.30.6)

Once the energy release rates were calculated, the delamination growth criterion
was applied for each point on the delamination front. In order to predict the
delamination growth, the three-dimensional crack growth criterion (Eq. (4.8)) was

used. If E; > 1, then delamination growth was predicted.
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Figure 4.8 Global and local coordinate system used for energy release rates cal-

culation.
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§4.4 Verification with Existing Data

The proposed 3-D FEM model was verified by comparing calculations with

existing analytical and test results.

A DCB under a Line Load

It was shown by Davidson et al. [81-83] that a DCB I specimen with a straight
delamination front had the highest value of strain energy release rate G at the
center and lowest value at its edges. The solutions were obtained in three dimen-
sions, using the commercial finite element code ABAQUS. The material used was
Hexcel T300/F155 graphite epoxy. Its properties are shown in Table 4-1. Similar
numerical calculations were performed using the current code, and the results were

compared with the ones given by Davidson et al. [81].

Table 4-1
Material properties for Fiberite T300/F155.

Material Property Value Units
Longitudinal Young’s modulus, E, 17.9 msi
Transverse Young’s modulus, E, 1.105 msi
Out-of-plane Young's modulus, E, 1.105 msi
Poisson’s ratio, v, 0.34

Poisson’s ratio, v, 0.34

Poisson’s ratio, vy, 0.34

In-plane shear modulus, G, 0.5 msi
Out-of-plane shear modulus, G, 0.5 msi

Out-of-plane shear modulus, G 0.5 msi
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For DCB in Mode I (see Figure 4.9), the comparison between the solutions
from [83] and the current code agreed quite well. The G; in the middle portion of
the laminate for [0]y4 was fairly flat, but it was very sensitive to the ply orientation.
For [0].4, the G value varies significantly along the width of the specimen. It is
believed that this phenomenon occurs because, when the beam is in bending, the
upper and lower arms of the beam deform anticlastically and tends to close the
crack near the free edge. As a result, t'he crack surfaces near the free edge may
be in contact due to the anticlastic curvature effect for angle ply laminates. For
[45/ — 45/(—45/45)2]2,, it was found that the finite element nodes on upper and
lower arms of the DCB specimen penetrated into each other without imposing the
contact model, as shown in Figure 4.9. By using the contact model, the overlapping
between the edges of the upper and lower arms was prevented, resulting in the zero
G value at the edge nodes. The observation that a small contact area at the free

edge of the crack front actually agreed well with the experimental findings {81, 82].

Therefore, the G; was the highest in the middle of the laminates, and the
middle portion would grow earlier when the DCB specimens were subjected to a
line load. Actually, it was observed by Davidson et al. [81] that in DCB Mode I

testing, the delamination front was somewhat thumbnail shaped.

Numerical simulations were also performed on the DCB specimens due to
Mode 11 loading. The solutions show that the Gy values were fairly constant
for the [0]4 laminate, but varies very drastically along the width of the specimen
for angle ply laminate. The Gy distribution was very much different from that
of the Mode 1 for the same ply orientation. Surprisingly, it was found from the
calculation that only a narrow strip of elements were in contact along the loading

edge, while the rest of the crack surfaces was open.
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Figure 4.9 Distribution of G for angle-ply DCB specimens with straight delam-

ination fronts in Mode I. (W =1in, ¢ =1 in.)
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Figure 4.10 Distribution of G/; for angle-ply DCB specimens with straight delam-

ination fronts in Mode II. (W = 1in, ¢ = 1 in.)
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A Circular Plate under the Point Load
A closed form solution (CFS) for a circular isotropic plate due to a central point
load is given in [80]. The solution is exact for linear deflections and approximate
for large deflections. The transverse deflections at the center of the plate were
determined by the current code as a function of the applied load. In Figure 4.11,
the present solution is compared to an approximate solution given by Timoshenko
(80]

Pa?  w,
0.217W =5

3
+ 0.443(-“,’1—") (4.31)
where w, is the transverse deflection at the center of a thin plate. The thickness
and the radius of the plate were 0.1 in and 2 in, respectively. The Young’s modulus

was 3 msi and the Poisson’s ratio was 0.3. It is shown that the present solution and

Timoshenko’s solution agreed fairly well.

An Aluminium Thick Plate Loaded by a Spherical Indenter
The analytical solution for the contact force f with respect to the indentation

a is defined by the elastic contact law [10, 11] given by:
f=ka" (4.32)

where the exponent n can be taken as 1.5 for a homogeneous transversely isotropic

plate and the contact stiffness k can be given as

4 E,

where the indenter is assumed to be rigid. The v is the poisson ration for the plate
and the E, is the Young’s modulus of the plate in the thickness direction. The
Young's modulus was 3 msi and the Poisson’s ratio was 0.3. The R is the radius of

the indenter and its value here was 0.25 in.
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Figure 4.11 A load-displacement curve for a circular plate subjected to a central
point load. Comparison between the calculations and elasticity solu-

tions.
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The plate had a length of 4 in, a width of 3 in, and a depth of 1.3 in. The bottom
of the plate was placed on the rigid support (i.e., w = 0 for the bottom surface
of the plate). The four edges were simply-supported. The indenter was applied
downward at the center of the plate. Only 1/4 plate was modeled. Figure 4.12
gives the comparison between the elasticity solution and the solution obtained by
the proposed finite element analysis. It is shown that the present solution and the

elasticity solution agreed fairly well.
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Figure 4.12 The load-indentation curve for an aluminium plate subjected to a
spherical indenter with a radius of 0.25 in. Comparison between the

predictions and the analytical solution..
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84.5 Results and Comparison

In order to further substantiate the proposed analysis, numerical calculations
were performed to compare with the experimental data generated during the investi-
gation or obtained from the literature. Two types of material systems were selected
for comparison: T300/976 and T800H /3900-2 graphite/epoxy materials. Both com-
posites contain thermoset resin systems, but T800H /3900-2 composite is toughened
on the interfaces with thin polyamide particles [84]. The stiffness and strengths of
unidirectional composites of both materials are very similar, except strain energy
release rates Grc and Grrc. Due to its toughening interface, T800H/3900-2 com-
posite has much higher fracture toughnesses than T300/976, especially for Gyj¢

values as shown in Table 4-2.

Test data on T300/976 composite were taken from Finn and Springer (1], while
experiments on T800H/3900-2 composite were conducted during this investigation.
Three different layups were selected: [06/90,]s, [02/906]s, and [04/904],. The ex-
periments on T800H/3900-2 composite followed the same procedures as were used
by Finn and Springer for T300/976 composite. All the specimens had the same
number of plies (16 plies), width (3in), and length (4in). During the tests, the spec-
imens were clamped on the two parallel edges and free on the others. A transverse
concentrated load induced through an indenter of radius 0.25 in was applied by an

MTS machine. Displacement control was used throughout all the tests.

All the specimens were X-rayed before and after each test to examine internal
damage resulting from the applied load. The applied energy (load) as a function
of measured delamination size from X-radiographs was also recorded. Figure 4.13
shows typical damage patterns from X-radiographs for three different layups of
T300/976 composite at a given input energy. The straight lines indicated matrix

cracks and the area bounded by white contour curve was delamination. It is worth
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noting that the shape of the delamination strongly depended upon the ply orienta-

tion and was considerably different for each of the three layups.

Table 4-2
Material properties for Fiberite T800H /3900-2.

Material Property Value Units
Longitudinal Young's modulus, E; 23.2 msi
Transverse Young’s modulus, E 1.33 msi
Out-of-plane Young’s modulus, E, 1.33 msi
Poisson’s ratio, v, 0.28

Poisson’s ratio, v, 0.28

Poisson’s ratio, vy, 0.28

In-plane shear modulus, G, 0.90 msi
Out-of-plane shear modulus, G, 0.90 mst
Out-of-plane shear modulus, G,. 0.90 msi
Longitudinal tensile strength, X, 413 ksi
Longitudinal compressive strength, X 191 ksi
Transverse tensile strength, Y, 6.41 ksi
Transverse compressive strength, Y. 24.4 ksi
Longitudinal shear strength (cross ply), S¢, 52.89 ksi
Critical strain energy release rate for mode I, G, 1.50 1bf/in
Critical strain energy release rate for mode II, Gy, 18.0 1bf/in

Ply thickness A, 0.006535 in
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T300/976

[04/904]s

Figure 4.13 X-Radiographs of graphite/epoxy composites resulting from a quasi-
static transverse load. a) [0s/90;], layup; b) [02/90¢),; and c) [04/904],.
Data taken from [1].
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For [06/90,], layup, a long slender peanut-like shape of a delamination on the
interface near the bottom surface was observed. A matrix crack (bending crack)
in the bottom 0 degree ply group was also clearly seen from the X-radiograph
given in Figure 4.13. The left and right half of the delaminations always grew
in a relatively equal size. However, for [0,/90¢), layup, the damage pattern was
considerably different from [0s/90;],. Distinct matrix cracks (shear cracks) in the
central 90 degree ply group near the loading area could be seen cleary in addition
to the bending crack, and the delamination shape was much wider and close to a
semi-circular shape on each side which was quite unevenly distributed. Meanwhile,
the [04/904], layup seems to produce a damage pattern somewhere in between the

[06/90;], and the [0¢/902], layups.

For T800H/3900-2 composite, the damage patterns were very similar to those
of T300/976 composite for the same ply orientation, except that the delamination
sizes were substantially smaller than those of T300/976. There was no delamination
damage below a certain energy level in T800H/3900-2 composite, at which the
T300/976 composite was already severely damaged. At a given amount of the
applied load, when panels made of both materials had damage, the damage size in
[02/906], of TBOOH /3900-2 was about only one-fifth of the observed from T300/976.
A comparison of damage size between T300/976 and T800H/3900-2 for various

amounts of input energy is shown in Figure 4.14.
T300/976 [06/902), Panels

In order to evaluate the damage propagation in [0¢/90;], composites due to
transverse concentrated loading, both types 1 and 2 damage models were utilized
to perform the numerical simulations. The type 1 model considered only a de-
lamination without a bending crack, however, type 2 model considered both the

delamination and the bending crack. The typical meshes used in the calculations
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Figure 4.14 Comparison between the measured and predicted delamination sizes

in [06/902], composites made of T300/976 and T800H/3900-2 with

respect to quasi-impact energy.
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were given previously in Figure 4.13-a.

The mesh, deformation, and stress data gencrated from the finite element anal-
ysis were stored in standard post-processing files and transformed to the commercial
code I - DEAS [69] (licensed by Structural Dynamics Research Corporation). Fig-
ure 4.15 shows a close-up view of a deformed cross-section (X — Z,Y =0) of a
[06/902], composite at a load of 172 Ibf. The local indentation due to the rigid
indenter can be clearly observed in the figure. A relatively large sliding between the
upper and lower surfaces of the delamination were also clearly shown in the figure.

A close-up side view of a deformed cross-section (Y — Z, X = 0) of a [0¢/90-],
is shown in Figure 4.16. The bending crack was open due to the applied load, which
closely resembles the cylindrical bending of a [90,,/0,], beam containing a surface
crack. The local indentation due to the rigid indenter and relatively large sliding

bHetween the upper and lower surfaces of the delamination were also shown in the

figure.
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MT\NP
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Figure 4.15 Deformation of a cross-section (X — Z2,Y =0)ofa [06/902)s composite

with a surface matrix crack.




.,

Figure 4.16 Deformation of a cross-section (Y — Z,X =)

of a [0, /902], composite
with a surface matrix crack.
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Figure 4.17 shows the comparison of the calculated total strain energy release
rate Gt based on types 1 and 2 models for a laminate containing a small circular
delamination with and without the surface matrix crack (bending crack). For the
laminate containing the matrix crack, the value of G along the delamination front
near the location of the the matrix crack increased significantly and reached a
peak at the intersection between the matrix crack and delamination (at ¢ = 0°).
The value of G, however, decreased rapidly as the delamination front, where the
value of G was calculated, moved away from the location of the matrix crack (¢

approaches to 90°).

A completely different distribution of the total strain energy release rate was
obtained for the laminate containing no bending crack. Overall, the values of G7
obtained from the type 1 model were much smaller than those calculated by the
type 2 model. Apparently, the laminate with the matrix crack could initiate the
delamination growth at a much earlier loading stage than the one without. Once

the delamination propagated, it would grow along the direction of matrix cracking.

Figure 4.18 shows the sequence of the delamination growth in the laminate
without the matrix crack predicted by the type 1 model based on the crack growth
criterion (Eq. (4.8)). The number shown in the bracket at the upper right corner
of each sub-figure indicates the sequence. The sub-figures were generated by eval-
uating the strain energy release rate ratio E4 for various sizes of delaminations.
First, the values of E; were calculated for a small circular implanted delamination.
If delamination growth was predicted (E; > 1), then the delamination size was
extended slightly along its major (X-direction, ¢ = 0°) or minor (Y -direction, ¢ =
90°) axis according to the predicted direction of delamination growth. In this anal-
ysis, the delamination was only allowed to grow into either a circular or an elliptical

shape. Again, numerical calculations were re-performed to evaluate the strain en-
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Figure 4.17 Comparison of the calculated total strain energy release rate along a

delamination front in a [06/90,], composite with or without a surface

matrix crack.
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ergy release rates for the laminate with the new delamination. This procedure was
repeated until the calculated strain energy release rate ratio was smaller than unity
everywhere along the delamination front. The size of the final delamination was
then considered to be the delamination shape corresponding to the given loading

condition.

At 0.05 inches of indenter displacement, Figure 4.18-1 shows that delamination
growth initiated at ¢ = 0°. As the delamination expanded along its major axis from
Figure 4.18-1 to Figure 4.18-2, the strain energy release rate increased, indicating
an unstable growth. It is noted that as the delamination continued to expand along
its major axis, the peak of the strain energy release rate ratio gradually shifted
more and more toward ¢ = 90°, indicating a much more uniform expansion of
delamination. Figure 4.18-3 indicates delamination expansion along the minor axis
due to high strain energy release rates near ¢ = 90°. The distribution of the strain
energy release rate ratio along the delamination front for all the delaminations was
relatively uniform compared to that of the laminate with the matrix crack. As a
result, the delamination tended to grow into an elliptical shape with major and

minor axis ratio about 2.

However, the delamination shape predicted by the type 1 model was signifi-
cantly different from the shape observed in the experimen.. First, the well-known
peanut-like delamination could not be predicted. Second, the predicted shape was
fairly large instead of slender and was very different from the observed delamination
shape with major and minor axis ratio about 5. And third, the applied load (or
displacement) which initiated the delamination growth was much higher than the
experimental one. It was noted that something was missing in the type 1 model for
simulating the delamination growth due to a spherical indenter loading. It seemed

to show that the type 1 model could not predict accurately the damage growth in
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without a surface matrix crack.
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this laminate due to a spherical indenter.

However, a completely different growth pattern was predicted by the type 2
model. First, at the same load, delamination growth was predicted to occur much
earlier for the laminate containing the same small delamination given in Figure 4.19-
1. Figure 4.19 shows the sequence of the delamination growth in the laminate with

the matrix crack predicted by the type 2. model.

At a fixed indenter displacement, Figure 4.19-1 and Figure 4.19-2 show that
the initial delamination grew from a small circular shape into a slender elliptical
shape along the direction at ¢ = 0° with its major axis parallel to the fiber direction
of the bottom ply group. The delamination growth was unstable because the strain
energy release rates actually increased as the delamination expanded. Figure 4.19-
3 indicates that delamination continued to expand along its major axis, until the
strain energy release rate ratio started to decrease along the delamination front near

¢ = 0°.

After a substantial growth of the delamination along its major axis, Figure 4.19-
4 shows that the strain energy release rates started to increase near ¢ = 75° away
from the matrix crack, initiating the expansion of the delamination along the minor
axis. However, a slight expansion of the delamination along its minor axis as shown
in Figure 4.19-5 subsequently caused a significant increase of the strain energy
release rates along the major axis. Hence, the delamination started to grow along the
major axis again. Apparently, the growth of the delamination was predominantly
controlled by the delamination front near the neighborhood where the matrix crack
intersected with the delamination. It is worth noting that at ¢ =90°, strain energy
release rates remained at a minimum regardless of the :* -pe of the delamination.
This observation implies that no delamination would grow in this area, leading the

delamination to a peanut shape which was frequently observed from the experiments




105

Chapter 4: Damage Induced by a Spherical Indenter

/07

01 80 90 ¥0 TO0 0001

1/HT

we ec ve Nc 0

<>

9) worg=quoLo=89

N

(€)

?mi

W §0°0 = q U 0c0 = ®

./"i! v

A.‘.V

wore=quopo==.

%

weseo=qmsIo==.

/\ |
-

weseo=quopo==.

)

L

{))

<o

v

eI XS P
wmeoo=v
(90/+06/90]

9L6/00E.L

wegeo=quWseo==.

QMN"‘G@MN#QQMN-‘O

0

PA XAANI HLMOYD JOVID

Figure 4.19 The predicted delamination growth sequence in a [0¢/90;], composite

containing a surface matrix crack.
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for this type of ply orientataion, such as the one given in Figure 4.13.

Figure 4.20 shows the comparisons between the estimated delamination sizes in
the z and y directions and the sizes measured from the experiments. The correlation
between the experiments and the predictions was very good. Figure 4.21 shows
the calculated strain energy release rates of Modes I, II, and III for the laminate
containing a small and a large delamination with a surface matrix crack. Clearly,
for the laminate containing the initial surface matrix crack, Gy (Mode I fracture)
dominated the total strain energy release rate along the delamination front near the
neighborhood where the surface matrix crack intersected with the delamination (¢
= 0°). This observation is also valid for a moderately large delamination, as shown

in the same figure.

However, when the surface crack was ignored in the analysis, Modes Il and
III fractures dominated the total strain energy release rate along the delamination
front for the laminate, as shown in Figure 4.22. Although the contribution of each
mode to the growth of the delamination strongly depended upon the current shape
of delamination, the presence of the matrix crack clearly played a very important
role in the delamination growth. Therefore, it is very important that the initial
matrix crack be considered in the analysis for understanding the damage mechanics

and mechanism of laminated composites due to transverse loading.

T300/976 [02/906])s Panels

Type 3 and 4 models were used to study the delamination growth behavior
in [0,/906], composites. The type 3 model simulates a delamination induced by a
pair of shear cracks, while the type 4 model considers both a bending crack and
shear cracks in conjunction with a delamination. Therefore, numerical calculations
were generated for the laminate containing a delamination with various sizes and a

shear crack in the middle 90° ply group with and without a surface bending crack
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Figure 4.21 Comparison of the calculated strain energy release rates of Modes I,

I1, and III along a small and a large delamination front in a [0s/90:],
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in the bottom 0° ply group. As suggested by the experimental observation, the
lengths of the matrix cracks were assumed to be slightly larger than the delamination
length and width in the z and y directions throughout the calculations. In the
following figures, similar to the [06/90;], case, numerical results will be presented

for delaminations from small to large sizes.

A close-up view of a deformed cross-section (X —Z,Y = 0) of a [02/90¢}, panel
at a load of 327 1bf is shown in Figure 4.23. The local indentation due to the rigid
indenter and relatively large sliding between the two surfaces of the delamination

and internal crack are clearly shown in Figure 4.23.

Figure 4.24 shows the sequence of the delamination growth in the laminate
containing a pair of shear cracks predicted by the type 3 model. At the fixed indenter
displacement, Figure 4.24-1 and Figure 4.24-2 show that the initial delamination
grew from a small elliptical shape into a wider elliptical shape along the direction
at ¢ = 90° with its minor axis perpendicular to the fiber direction of the bottom
ply group. The delamination growth was unstable because the strain energy release
rates increased as the delamination expanded. Figure 4.24-3 indicates that the
delamination began to expand along its major axis, as the strain energy release rate
ratio started to decrease along the delamination front near ¢ = 90° and had the

highest value at the delamination front near ¢ = 0°.

The expansion of the delamination along its major or minor axis ceased to
increase when the growth index E,; along the delamination front was below unity, as
in the case shown in Figure 4.24-6. The delamination shape shown in Figure 4.24-
6 is approximately a circular one, which agreed with the delamination shape of
[02/90¢), panels observed from the experiments (see Figure 4.13-b). Figure 4.25
shows the comparisons between the estimated delamination sizes in the z and y

directions and the sizes measured from the experiments. The correlation between
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Figure 4.23 Deformation ofa cross-section (X- 72,Y =0) of a {02/ 90¢}s composite
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Figure 4.24 The predicted delamination growth sequence in a [0;/90¢], composite

containing a surface matrix crack and an internal matrix crack.
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the experiments and the predictions was good.

It was interesting to evaluate the contributing fracture modes for the delami-
nation growth in [0;/906], panels. Figure 4.26 shows the calculated strain energy
release rates of Modes I, II, and III for the laminate containing a small delamination
with an internal shear crack and a surface bending crack. For the laminate with
the initial bending crack, G; (Mode I fracture) contributed significantly to the total
strain energy release rate along the delamination front near the neighborhood where
the matrix cracks intersected with the delamination (¢ = 0° and 90°), indicating
that delamination initiation was in mixed modes.

Figure 4.27 shows the calculated strain energy release rates of Modes I, II,
and III for the laminate containing a larger delamination with an internal crack
and with or without a surface matrix crack. Clearly, Modes II and III fractures
dominated the total strain energy release rate for the laminate with and without
the surface matrix crack. And it is noted that the total strain energy release rate
was only slightly affected by the introduction of the surface crack, indicating that

delamination growth was dominated by the internal shear crack.
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Figure 4.26 Comparison of the calculated strain energy release rates of Modes I,
II, and III along a small delamination front in a [0;/90¢], composite

containing an internal crack and a surface matrix crack.
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T300/976 [04/904], Panels

It has been shown that delamination growth in [06/90;], panels was mainly
dominated by Mode I fracture, while in [02/90¢], it was mainly dominated by shear
(Mode II and III) fracture. In the following, delamination growth of a [04/904],

panel was studied. Again, type 3 and 4 models were considered.

Figure 4.28 shows the sequence of the delamination growth in the laminate with
the matrix cracks predicted by the type 3 model. At a fixed indenter displacement,
Figure 4.28-1 and Figure 4.28-2 show that the initial delamination grew from a small
elliptical shape into a larger elliptical shape along the direction at ¢ = 90° with its
minor axis perpendicular to the fiber direction of the bottom ply group.Figure 4.28-3
indicates the delamination would begin to expand along its major axis, as the strain
energy release rate ratio started to decrease along the delamination front around ¢

= 90°, and had the highest values at the delamination front around ¢ = 0°.

Similarly, the delamination ceased to grow along its major or minor axis as the
growth index E, along the delamination front fell to below unity, such as the case
shown in Figure 4.28-4. The delamination shape shown in Figure 4.28-4 was an
elliptical shape, which agreed with the shape observed in the experiments (see Fig-
ure 4.13-c). Figure 4.29 shows the comparisons between the estimated delamination
sizes in the r and y directions and the sizes measured from the experiments. The

correlation matches reasonably well between the experiments and the predictions.

It was again interesting to investigate the contributing modes to the delami-
nation growth. Figure 4.30 shows the comparisons of the calculated crack growth
index E; for the laminate containing a small elliptical delamination with an internal
matrix crack and with or without the surface matrix crack. The upper figure was
the case for a small delamination. For the laminate containing the surface matrix

crack, the value of E4 along the delamination front near the location of both matrix
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Figure 4.28 The predicted delamination growth sequence in a [04/904), composite

containing a surface matrix crack and an internal matrix crack.
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cracks increased significantly and reached a peak at the intersections between the
matrix cracks and delamination (at ¢ = 0°, and 90°). The value of E,, however,
decreased rapidly as the delamination front where the value of E4 was calculated
moved farther away from the location of the matrix cracks (when ¢ is not around
0° and 90°). Therefore, for a small delamination, the coupling between the matrix

cracks and delamination was significant.

A different distribution of the total strain energy release rate was obtained
for the laminate containing no pre-introduced matrix crack. Overall, the values
of E4 were much smaller than those calculated from the laminate containing the
matrix crack. Apparently, the laminate with the surface matrix crack could initiate
the delamination at a much earlier loading stage than the one without. Once the
delamination propagated, it would grow along with the direction of internal matrix

cracking.

However, for moderate and large delaminations such as the case shown in the
lower figure of Figure 4.30, the surface crack had limited contribution to the delami-
nation growth. The coupling between the surface matrix crack and the delamination
only appeared locally at ¢ = 0°. Apparently, the effect of the surface matrix crack

on the delamination growth decreased significantly as the delamination grew.

It was also interesting to examine the contributing fracture modes for delam-
ination growth when the delamination is small or moderately sized. Figure 4.31
shows the calculated strain energy release rates of Modes I, I, and III for the lam-
inate containing a small delamination with an internal crack and a surface matrix
crack. Clearly, for the laminate with a small delamination, Gy (Mode I fracture)
contributed significantly to the total strain energy release rate along the delamina-
tion front near the neighborhood where the surface matrix crack intersected with

the delamination (¢ = 0° and 90°). Generally, the growth for a small delamination
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Figure 4.30 The effect of bending crack on the crack growth index E, for a laminate
containing a delamination and a bending and shear crack. Comparison
of E4 values between a small and a large delamination in a [04/904],
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Figure 4.31 The calculated strain energy release rates between a small and a large
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was in mixed modes. However, the lower part of Figure 4.31 showed that except
in the neighborhood of ¢ = 0°, the strain energy release rates were only slightly
affected by the surface crack. The shear mode fractures (Modes II and III) took
the consideration of the largest greatest portion of the total energy release rate, in-
dicating that the delamination growth was dominated by internal matrix cracking
and the surface crack effect was minimum.

T800H/3900-2 [0,/90¢), Panels

Numerical simulations were also performed on T800H/3500-2 composites to
estimate delamination sizes corresponding to the applied load (energy). The results
of the test data on [02/90¢], are shown in Figure 4.14. Only the type 4 model was
used to correlate the predictions and the experiments. The estimated delamination
sizes in the z and y directions are presented in Figure 4.14. The comparison between
the estimated sizes and the measured sizes agree quite well.

For the purpose of comparison, the estimated results and experimental data
for T300/976 panels are also shown in the same figure. It is shown clearly that the
panels made of T800/976 have much smaller damage sizes than the panels made of
T300/976. It was also observed that the damage shape was much more symmetric
than the that in T300/976 panels, indicting the damage growth inside the toughened
composites tend to have more stable growth. The reduced damage size is one of
the main reasons that contribute to the reported high compressive strength after

impact (CAI) for this new material system.
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§4.6 Concluding Remarks

A finite element analysis was developed for analyzing cross-ply laminated com-
posite plates subjected to transverse concentrated loading resulting from a spherical
indenter. Based on the analysis, the following remarks can be made for the lami-
nates studied:

1. The initial matrix cracking significantly affects the growth of delamination
resulting from transverse loading.

2. Matrix cracks enhance delamination growth.

3. Mode I fracture is critical for surface crack-induced delamination growth.

4. Modes II and III shear fracture dominate internal crack induced delamination
growth.

5. Matrix cracking must be considered for modeling delamination propagation
due to transverse loading.

6. Delamination growth depends on ply orientation.

Additionally, it is noted that the proposed finite element analysis can be
extended to study other ply orientations and other loading conditions, such as

delamination-buckling.




Appendix A

A 2-D Finite Element Mesh Remodeling Procedure

Before a structure is analyzed or tested, there is no information about where
the matrix cracks are to occur or what interfaces are to be delaminated. Here a
simple but effective scheme is developed, which can be illustrated by two simple but
typical meshes, shown in Figures A.1 and A.2. The first mesh, shown in Figure A.1,
is mainly used for [0,,/90,], laminates, for which embedded crack-induced delam-
inations are the typical damage mode. The second mesh, shown in Figure A.2,
is mainly used for [90,,/0,], laminates, for which surface bending crack-induced

delamination is the typical damage pattern.

This technique uses the original two-dimensional finite element grid system. In
the original mesh, double lines instead of one regular line are used on each interface
between elements in the thickness direction or in the span-length direction. In
other words, each node is assigned systematically four nodal numbers, instead of
one, in the global nodal system. If no damage occurs, all four numbers at each
node are assigned the same equation numbers. For example, the four nodes 1, j, k,1
in Figure A.1 have the same equation numbers if there is no damage introduced at
that point. Once a crack is generated, nodes on different sides of the double lines
are split and therefore have different equation numbers. For example, as shown in

Figure A-1, nodes (E, G) and nodes (F, H) are separated due to the existence of the
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vertical matrix crack, while two nodes E and G (same for F and H) are assigned
the same equation numbers. For some corner points such as (4, B,C, D), where
the delamination and the matrix crack intersect, (A4, B, D) are assigned the same
equation number. C remains independent.

As the matrix cracks and delaminations may intersect, one needs to apply the
contact condition to the intersection points (such as C and J) to prevent the over-
lapping of the matrix crack and the delamination surfaces. Therefore, five degrees
of freedom need to be assigned to each node. The first three are for displacements in
T, 7, and z3 directions. The fourth is used for a Lagrange multiplier for possible
delaminations and the fifth is used for a Lagrange multiplier for possible matrix
cracks.

By this technique, matrix cracking can be easily simulated wherever it occurs,
as the interface only needs to be split between two elements and the crack is intro-

duced without much difficulty. This is also true for delamination modeling.
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Figure A.1 A typical mesh used in the analysis for modeling shear matrix crack

induced delaminations in two dimensions.
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Figure A.2 A typical mesh used in the analysis for modeling bending matrix crack

induced delamination in two dimensions.




Appendix B

Contact Residual and Stiffness
of a 2-D Contact Element

In order to assure quadratic convergence of Newton’s method, it is essential
to derive a consistent tangent matrix in linearizing the nonlinear finite element
equation. In the following, a contact element consisting of one slave node and two
master nodes is derived. The derivation is in a vector and tensor form. In order to
make the implementation easier, matrix expressions are derived for contact residual

and consistent contact tangent stiffness matrix.

By referring to Figure B.1, the contact gap associated with a typical slave node

s is given by a simple form

g=n-(T,— 1) (B.1)

where n is the normal of contact point ¢ on master segment 1 — 2. It is worthwhile
to note that the normal is unique for master segment 1 — 2. To obtain an explicit
expression for the residual and contact stiffness in Eq. (4.20) and Eq. (3.36), the
variation §g must be performed. In the fully nonlinear case, the change in the normal
vector T needs to be considered. As . = €, x €;, the change in the vector e, also

needs to be considered. The tangent €, is given by €, = (&2 — &;)/|[|T2 — T4}
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Figure B.1 Geometry of a slave node s with a master segment 1-2.
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By using the chain rule, the variation of €, is given as

se, = —17[(6232 —éxy)||E2 — 21| = (T2 — X1)6||22 — T4]]] (B.2)

e — @,

Recalling ||&2 — &,|| = [(2 — 1) - (&2 — 1)]*/?, the following is obtained:

(T2 — &) - (b2, — b2,)

S|, — 24| = B3
Iz = il P (5:3)
Therefore
1 r, -
bey = T [(622 — 621) - (@2 — 2) 2T (2, — 621)] (B4)
||1’2— | l®e2 — 1||
or
1
e = —1—-e, €, (62 -6 B.5
1 ”32"31”[ 1 1 ( 2 1)] ( )
or
1
e =—(I-e;®e,)(éxs - b B.6
1 ”232 —_ 231||( 1 1)( 2 1) ( )
or
1
e = ——— (N n)(éx, — b B.7

where T ® . + €; ® €; = I is used. The symbol ® denotes tensor product. Also,

the variation of 1 gives the expression:
n=6e;, xe;+e; xbe;, =e,; xde,; (B.8)

or

én = e; x (n@n)(éx; — éx,) (B.9)

1
lz2 — 4

Recalling €; x m = —e,, the following is obtained:

1
n=—-————— (€, n)(éx; - dx B.10
||332—231”( 1 )( 2 l) ( )
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The variation of the gap g therefore can be derived as follows:
bg=(62,-bx,) n+(x,—T;)-6n (B.11)

or

(2!, — zl)

bg = [(b, — b)) M — —8m——=
9= Dz, T

(e; @ n)(bx, - bz,)] (B.12)

or

(23, — ml)

b9 = [(b, — 6x,) N —
N

e n- 6z —bx,y))] (B.13)

It is observed that (£, — &1)/||T2 — &1]|| - €, appearing in Eq. (B 13) is exactly the
line coordinate £, as can be seen from Figure B.1. The contact node is projected
onto line 1-2 and interpolated in terms of &; and &; as &, = (1 — §)&; + £T2.

Therefore ég is rewritten as
b9 = (6@, — (1 - §)é6x1 - £T2)- (B.14)
or
bg=6x,—x) M (B-15)
The total differential of 6g can be written as
d(ég) = d[§(z, — )} -+ é(x, — ) -dn (B.16)

where the second term on the RHS side of the Eq. (B.16) is simple to find. The
first term of the RHS side of the Eq. (B.16) is

di§(xz, - x.)] - n=—-d(@) N =—-(bT.edf) M (B.17)

By the definition of &, in terms of &; and &, (that is, &, = (1 - §)&, + £&2), the

following is obtained:

62!.;,5 =62, - 6, (B."8)
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The differential of £ = (&, — &,)/||T2 — 21| - €, is derived by chain rule as

d§

e — 2|
+ de, - (du, — du.)]

slgn - (du; — du,) } (B.19)

With all the information provided above, the total differential of 6g can be

derived as
d(ég) = —m[ﬂua - u.) - (e1 @ n)(du; — du,)
- (u, - u.) - (e; @ n)(du, — du,) ? (B.20)
g
+ “—m—;—_m—l”d('llq - 'U;]) . (n ® n)(éu, - 6‘u,c)

The consistent contact stiffness then follows from the identity

9%g

= M__~¥J
d9) = U™ Stour

sul (B.21)
From the virtual work linearization, the contact stiffness can be written as
0 dg
= AN N\ar .22
ko= Asm(5207) (B.22)

And the contact residual force of the element is

0g
= Ats B.23
L ouM ( )
In the following, explicit matrix expressions nure derived for a single slave node
in contact with the master segment. Based on these matrices, a standard assembly
procedure can be used to add the contact contributions of each contact node to

global tangent stiffness and residual. In this process, the change of the profile or

bandwidth must be taken into account.
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The following vectors are now introduced:
NT={-(1-¢n,~(n,n} )
T = {-(1-¢)e1, —tey, €1}

> (B.24)
UT = {-n,n,0}

du = {du,, du,, du,} )
where ¢ and €, are shown in Figure B.1. The nodal values du,, du., and du, of
the displacement increments associated with the three nodes (1, 2, s) are involved
in the contact of a single slave node with a master segment. With the definition of

these vectors, the contact residual and stiffness are given respectively as

f.=A\N (B.25)
and
k.= ——-—)‘—I(UTT +TUT) (B.26)

&2 — 2




Appendix C

Symmetry Treatment and Contact Node Search Strategy

In a finite element setting, given the slave node, the contact search problem
is to search for the closest projection onto the master surface. There are three
steps to take for the search. The first step is to determine which master node is
closest to the slave node. In computer science, this first step is often referred to as
the “nearest neighbor problem”[64]. The second step is to determine which of the
master segments, having the master node as one of their vertices, is closest to the
slave node. The third step is to determine the closest point of the master segment

to the slave node in the biunit domain.

The most obvious but most expensive method for the nearest neighbor problem
is the global search, which is to simply check the distance between a given slave node
and each master node, and choose the master node with the minimum. However,
a simple local search method developed by Benson and Hallquist was adopted here
[64]). The idea was to take advantage of the elemental connectivity associated with
the finite element method. This is briefly outlined in Figure C.1.

Assume that at time t" the closest master node M to the given slave node S
is known. It is easy to find a short list of potential new master nodes for the next
load step in the immediate neighborhood of M by simply checking the elemental

connectivity. The list of candidate nodes is generated by considering all of the nodes
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Closest Point

. : Regular master nodes

Potential closest points for next step

@ : Current closest point corresponding to slave node S
O : The slave node

Figure C.1 Description of a local search technique.
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defining the vertices of all of the master segments having M as a vertex. The as-
sumption behind this idea is that during each time step, the relative sliding between
the slave node and the neighborhood is not more than some accountable size, such
as the element size. The new neighbor search is updated in a new time step. The
search always needs to find the closest node to the slave node in its neighborhood.
Searching a small neighborhood is computationally much cheaper than searching
all the nodes. Generally, at the initial time step, a global search is performed for
the initial nearest neighbor. The search neighborhood is updated appropriately as
the slave node moves over the master surface since the neighborhood is defined in

terms of the last nearest neighbor. The strategy works well in most situations.

After determining the nearest neighbor, the exact segment onto which the slave
node is projected needs to be determined . This step is called local search, which
is very expensive as it is generally associated with nonlinear iterations. In general,
there are several surface segments attached to the nearest neighbor corresponding
to the slave node. As there may exist corners, edges, and complicated curvatures

at the nearest neighbor, the following strategy is considered.

For all the potential segments attached to the nearest neighbor on the master
surface, first calculate the parent domain parameters (£.,7.) for all the segments.
Then, determine one segment with the minimum (§.,7.), therefore with the min-
imum gap g. However, it is not guaranteed that ({.,7n.) will fall into the biunit
domain. Depending on where the nearest neighbor is located, and depending on
the local curvature, the potential contact element types can be one of the following
three: node-to-surface contact element, node-to-line contact element, or node-to-
node contact element (see Figure C.2). In the following, the problem is discussed
in terms of the geometric location of the nearest neighbor and the location of the

projected node in terms of parent domain.
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: ode-to-line Node-to-node Node-to-edge
2b: N(s B (S-B) (S -A)

B
C ,
S

3D: Node-to-surface Node-to-line Node-to-node
. (S - ABCD) (S-AB) (S-B)

Figure C.2 Description of contact element types.
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In general, the contact region for each delamination is unknown before solving
the equilibrium equation. Therefore, an assumption must be made for the contact
region of each delamination. The best approximation is to assume that the contact
region will remain the same before and after deformation. This means that the
contact region, which is known at the previous iteration, is going to be the same for
the current iteration. This assumption allows us to solve the equilibrium equation
for the displacement. Following each solution, the validity of the assumption for the
contact region musi ve checked. Some portions of the delamination may no longer
be in contact, or the portions that were not in contact may now be in contact.

The first step in the determination of the contact region is to find the position
of each slave node with respect to its master element in the parent domain, which is
essential for both gap calculations and for judging what type of contact is established
between the slave node and the master segment.

In order to calculate the gap, the coordinates (&.,7.) of the point ¢ on some
master segment must be calculated. There are several elements attached to the
nearest neighbor. Therefore (£.,7.) must be calculated for each of these elements.
The contact point is defined on the master segment as the point closest to the slave
node and is calculated by strictly solving a minimization problem. The inequality
constraints that bound the isoparametric coordinates between -1 and +1 are not
explicitly imposed. If the solution of the unconstrained problem lies outside the
permissible range; the node is usually considered not in contact with the segment.
The function to be minimized is denoted J, the location of the slave node is .,

and the vector to the isoparametric slave segment is &,. The problem is stated as
. 1
Min:J = -2-(:!:, -z N, — x0),
J,¢=el-(z,—a:c)=0, (Cl)

Jo=€e (x,-2)=0
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An explicit solution of these equations is very cumbersome and therefore they are
solved numerically using Newton’s method. Numerical tests suggest that in cases
where elements are not distorted, two iterations are sufficient to obtain an engi-
neering accuracy, as a good guess always exists from the previous solution step.
However, the method diverges with distorted elements unless the initial guess is
accurate. A fast, robust and reasonably accurate approximate contact point cal-
culation [64] was used because of the instability of the Newton-Raphson method.
An exact contact point calculation is critical in the delamination contact problem
to prevent the solution from oscillating divergence when locating the contact point.
Two to three iterations with a least-squares projection were used to generate an

initial guess [64].
After finding the (£.,7.), the following tests need to be applied:
1. The Contact Gap Test:

The slave node s may stay away from its master element (Figure C.4.a) if

g>e (C.2)

is satisfied, where ¢, is the extending tolerance that is used to overcome nu-
merical errors in the calculation of the gap g and to extend the parent domain
to overcome the discontinuous slope between elements. In this case, the slave
node s is not in contact with its master element. If the slave node s were
in contact with its master element previously, then the contact would be re-
leased without applying the contact force test. In this case, the value of the
contact force for the master element of that slave node is set to zero. If two
delamination surfaces are not in contact, there are no surface tractions on the

delamination surface.
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a. Neare‘st neighbor is a comer ‘node.
M

) edge

NO CONTACT NTS CONTACT NTL CONTACT
b. Nearest neighbor is an edge node.

il NTS: NODE-TO-SURFACE

_ NTL: NODE-TO-LINE
®———@]  NTN:NODE-TO-NODE

NTL (AB) CONTACT NTL (CD) CONTACT

c¢. Nearest neighbor is an interior node.

Figure C.3 All the possible locations of a slave node with respect to a master

ellement in the contact search.
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The slave node s may penetrate into its master element (Figure C.4.b) if
g<0 (C.3)

is satisfied. If the slave node s penetrates into its master element, contact is
established without applying the contact force test.
2. The Contact Force Test:

The contact force test is applied if
0< gl <e (C4)

If two delamination surfaces are in contact, then the contact forces must be
compressive. If the nodal contact force at slave node number § is found to be
tensile, then the slave node must no longer be in contact and it is released. In
this case, the value of the Lagrange multiplier for the master element of that
slave node is set to zero.

3. The Geometric Contact Check to Determine Potential Contact Element Type:
If there is overlapping, the following checks must be made to evaluate what
type of contact element is required:

(a). Nearest neighbor is a corner node on the master surface (Figure C.3.a).

The slave node s may project onto the master element (Figure C.3.a) if
€l <14 €9y el <1+ €g (C.5)

Otherwise, no contact occurs for the slave node.
(b). Nearest neighbor is an edge node on the master surface (Figure C.3.b).
Depending on the local coordinates of the master element, there are several

cases to be considered. For the coordinates shown in the figure, if

€l 21+ ¢ (C-6)




Appendix C: Symmetry Treatment and Contact Node Search Strategy 143

a. Slave node S is penetrating into its master element; CONTACT

b. Slave node S is away from its master element; NO CONTACT

C. Slave node S is in CONTACT with its master element if contact force
is compressive

Figure C.4 Determination of contact according to the position of the slave node

with respect to its master element.
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no contact occurs. If
€l S 1+ €, Inel <1+ ¢ (C.7)

a node-to-surface contact element may be assumed, depending on the further

contact check. If

€l S 1+ ¢€q, Nl > 1+ ¢ (C.8)

a node-to-line contact element may be assumed, depending on the further con-
tact check, with line AB.

If the local coordinates reverse in £ and 7, Eq. (C.8) only needs to reverse &,
and 7.

(c). Nearest neighbor is an interior node on the master surface (Figure C.3.c).
There are four checks typical for this case, which may result in three different

contact elements. If
Ifcl <l+ €9y |77c| <1+ €g (CQ)

a node-to-surface contact may be assumed. It may result in three different

contact elements. If
€| > 1+ €, Inel > 1+¢ (C.10)

a node-to-node contact is assumed, with the closest projection point being the

nearest neigﬁbor node. If
€l > 14+ €, Incl S 14¢ (C.11)

a node-to-line contact may be assumed, depending on the further contact check,

as some point on line AB is the closest point projection. If

el <1+€q, Inc|l>1+¢ (C.12)




Appendix C: Symmetry Treatment and Contact Node Search Strategy 145

a node-to-line contact may be assumed, depending on the further contact check,

as some point on line CD is the closest point projection.

After determing the master segment, the gap g for those node-to-line and node-
to-node contact elements must be redefined. The gap and the contact force should
also be rechecked.

The implementation of the above treatment is fairly complicated. There is
another optional approach to avoid the complicated treatment, though it may fail
in some cases. That is, by slightly increasing ¢, (i.e., to extend the parent domain),
node-to-surface contact elements may be used alone. In most cases, the numerical
results differ very slightly from those obtained by the complicated logic. Both

options were used alternatively in the simulations.




Appendix D

Contact Residual and Stiffness
of a 3-D Contact Element

In this section, attention is restricted to one contact element, realizing that the
total contact contribution is merely an assembly of all such active contact elements.
The objective is to derive expressions for contact residual f, and consistent contact
stiffness k.. The contact element is defined such that it contains the master nodes
of the segment and the active slave node, as shown in Figure D.1. In this fignre,
the current position of a slave node is given as &,, and the master element surface
is the element containing its projection &. on the master surface. As indicated
in the figure, it is assumed that &. lies in the continuous interior of the master
element surface, as indicated in the figure. The case where 2. lies on a discontin-
uous portion of the master surface can occasionally be troublesome. In practice,
steps may be taken to avoid this situation by either extending element parameteri-
zations outside the normal domain (i.e., by allowing (£, ) to lie slightly outside the
biunit square), or by altering the contact element types near corners, edges, and
vertices with complicated curvatures such that the closest point projection may be
best approximated. In the numerical verification the two approaches were used

alternatively, with the former and less costly approach being preferred.

First consider a four node quadrilateral segment of arbitrary shape. From

this the three node triangular version can be easily derived. If defining standard

146
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147

Figure D.1 Projection of slave point &, onto the discrete master surface.
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isoparametric shape functions on the biunit square (for 3-D problem), the following
isoparametric interpolation of the geometry of the master segment can be assumed

as
=) $.&% =9,z (D.1)

where ¢ denotes the position vector of a master node and ¥, (a = 1 — 4) are the

familiar bi-linear interpolation functions defined as follows

Yo = 7 (14 £62) (1+7m) (D2)

where a = 1 — 4 and there is no summation on a.
Given an element surface, the tangents to £ and n are given here in terms of

the isoparametric mapping:

1
€1 =T =12 = 26 (14 nma) °

1 (D.3)
€2=Tp= Yo &* = 37 (14 &) z°
The normality conditions of the gap are as follows:
e (x,—x.)=0,
(D-4)
e (2,—x)=0
Consider now the total differentials of the two equations in Eq. (D.4):
de, - (z,—x.)+ € -(dr,—dx.)=0 (D.5)
de;- (¢, —x )+ €2 (dx,—dx.)=0 (D.6)
From Eq. (D.3), one obtains the differentials of the tangents
de; =& dn +dx ¢ (D.7)

de; = £*df +dx., (D.8)
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where the vector * is
1 1
z* = Z(En)N-'BN = Z(:c‘ -zt 4+ -2 (D.9)

which is interpreted as an indicator of shape of the element. It is easy to verify
that for a plane element of parallelogram shape &* = 0. For the second term of

Eq. (D.5) and Eq. (D.6) one obtains the following
de, - dx.=du, - du.— e, d§ — eqdn (D.10)

Finally, introducing the four equations (Eq. (D.7), Eq. (D.8), Eq. (D.9), and Eq. (D.10))
into Eq. (D.5) and Eq. (D.6) and solving for the increments of the surface coordi-

nates results in

1
df = ﬁ{y(mnn ~dUc e — MmN - dUcy) + (Ma2€; — Myz€7) - (du, — du,)}

(D.11)

1 _
dn = E{g(mn'n cdUey — M2 - dUc¢) + (M1 €3 — Ty2€,) - (du, — du,)}

(D.12)
with the abbreviations
Mg =my, —2*-d (D.13)
and
h = myymqp —m3, (D.14)
where the normal n is given as follows
- ﬁgi_;‘-g:_" (D.15)

Having defined the kinematical expressions, the expressions of first and second vari-

ations of the gap g must be derived, which involves much algebraic manipulation.
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For simplicity, attention is limited to the main equations.

As was shown before, the weak form of the equilibrium equation requires the
first variation of the gap g (Eq. (3.9)) with respect to the node variables. Taking

the first variation of g results in
bg=mn-(bu,-bu;)+émn-(x,—x.) (D.16)

As §m is perpendicular to 1, the second term of ég vanishes. The second variation

of the gap is then
d(ég) =dn - (6u, — éu.)+ n-d(du, — éu.) (D.17)
Some algebraic manipulations show that the variation of 72 results in
dn = %(I _ngmn)de; x e3) (D.18)
I is the identity matrix and ® denotes tensor product.  is the surface element

area and is defined as

Q= le; x e, (D.19)

It is obvious that we need to derive d(e; x €3). By using Eq. (D.7) and Eq. (D.8),

one obtains
d(e; x e3) = (T* x €3)dn — (&* x €;)d€ + (dU ¢ x €;3) — (du., x €;) (D.20)

where dn and d£ can be eliminated by applying equations Eq. (D.11) and Eq. (D.12).
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After some algebraic manipulations the variation of 72 becomes

dn = 'Sli(I -n@n){(du.e x €2+ €; xdi,,)
1
+ -E[(el X 2!') ® (ngel - ﬁllzez)(d‘u. - duc)
+(2* x ;) ® (M1 €2 — my2€,)(du, — du.)] | (D.21)

+ %[(31 X &%) @ N(modU, ¢ — My2dl, y)

+(X* x €2) ® N(m1dUc,y — M12dU¢)]} J

It remains to evaluate the second term of Eq. (D.16), which is simply given by
d(éu, — éu.) = —(6U,edE + S ,mdn) (D.22)

By applying Eq. (D.11) and Eq. (D.12) to eliminate d{ and dn, one obtains

n-déu, —du.) = -%[6uc,5(m22(n ®e;)—mp(nQey))(du, —du,) )
+ 86U m(mn(n ® 22) — MmN ® €,))(du, — du.)) L

- %[6uc,¢(n ® 1)(m11dU, ¢ — 1zdit )

+ 6uc,,,(‘n ® n)(muduc,,, - ﬁznduc,g)] )
(D.23)

The matrix for contact contribution is expected to be symmetric. However, only
the last part of Eq. (D.23) shows symmetry a priori. To obtain the symmetric
expressions requires additional algebraic operations, summarized in the following.
First the contribution due to warping must be separated from the other parts by
considering &* with respect to the local tangential system €,, €; , and n according

to
x*==z'e, +zle;+z°n (D.24)

Then it is necessary to evaluate the cross products which give the corresponding

contravariant base vectors. In each case, a set of dual basis vectors may be computed
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such that €'-e; = 5;: (i, j=1-2). A dual basis at the contact point &, may be

similarly defined as
e, e5=2560 (D.25)

A merit tensor may also be expressed as
Mag = €4 €4 (D.26)
The contravariant tangents may be defined as
e* = (map) '€p (D.27)

After rearranging the terms in a convenient manner, the final equation is

\

3
d((sg) = (z_hg-ﬁll2 - 1)[duc’€(n ® el) + duc"’(n ® 62)](611,, _ 6uc)
3
— %[mzzduc,g(‘n ® n)&uc,f +mudie ,(NQ n)guc,”)]

—m(dU (M @ N)dU, , + U, (T @ N)dU, ¢]
3 »  (D.28)

- %(du’s — du.)[(mimaz - mizmiz)((e' ® €%) + (e? @ e'))

+ z3g(m22(e2 ® 82) + 7"’!«11(81 ® el))](&u, - 6'uc)

z3g

" h
z3g 2 1
- T[m226uc,f(n ®e ) + mlléuc,n(n ®e )](dua - duc)

[maz2dtt. (N ® €%) + mydu. ,(n ® e')|(du, — su.)

which proves the symmetry. It is desired to replace the displacement vectors by
introducing the displacement interpolation according to Eq. (D.1). The second
order part of the contact stiffness then follows from the identity

0%g

—quM 99
d(ég) = du ouMouN

su® (D.29)
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From the virtual work linearization, the contact stiffness can be written as

dg Og dg

P
ko= 5 N oum + t5un (Gun

) (D.30)

And the contact residual force of the element is

99
ouM

=t (D.31)

For computational purposes it is advantageous to rewrite the result in matrix no-
tation. To achieve this, it is first necessary to make the following definitions for

vectors such that the slave node is represented as the last node:

NT = {-n,-ny,,---,n} )
‘,lT = {—elwls—el¢2""ael}
V)T = {—€e*¢y, —e?yy,---, e?}
> (D.32)
UlT = {ny1¢, NPy ¢,--+,0,0,0}

U2T = {n¢l,ﬂ’ n¢’2,m e ,0, 0, 0}

du = {du,, du,, ---,du,}
It is noted that all the vectors are based on the interpolation functions evaluated for

the surface coordinates of point c. Using these vectors, the contact reaction forces

(contact residual forces) on the contact element with an active slave node are then

f.=tN (D.33)
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The corresponding consistent tangent stiffness matrix takes the form
3
k.=eNNT+ t{(z—hgﬁ’llz -NOVT + U, V,T + VVUT + V,UT|
- %[anlUlT + mpULUT — i (U U + UUT))

3
- %[(mumzz - ﬁllzmlz)(Vlva + Vz‘/;T) + -‘tsg(mu‘,lVlT + m22VszT)]

3
- 'z—h'g[mzz(Ul V) + VoUT) + my (U, VT + VIUD)} ‘
(D.34)

where the t = eg for the penalty method, and ¢ = A + eg for augmented Lagrangian
treatment. It must be emphasized that, except for the linear term ININT, all
terms are due to the second variation of the gap and therefore account for its
nonlinear kinematics. It is seen that the contribution due to warping represented
by those parts containing z3 is well separated from the others. Obviously, for linear
kinematics, warping does not enter into consideration.

As a special case, the residual and stiffness matrix for a three node triangular
contact segment can be extracted by simply letting z3 = 0 in Eq. (D.34). Another
simplification is due to the fact that the physical point of contact can be explicitly
calculated since the normal 7 is constant. Expressions for node-to-line element and
node-to-node element in 3-D space can be similarly derived. Expressions for planar
and axisymmetric problems can be readily derived using an approach similar to the
one used above.

For the case where one body is deformable and the other is rigid, and the motion
of the rigid body (master surface) is prescribed, it is assumed that the surface can
be represented either by a set of element edges defining the surface or in a globally
continuous fashion. The effect of this assumption is simply to eliminate the master
degrees of freedom from the problem, leaving only the slave degrees of freedom as

unknowns.
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Input Data Files for Computer Codes

§E.1 Interface for 2CRACK

The model described in Chapter 3, was implemented into a nonlinear finite
element program designated as “2CRACK”. An user-friendly interface to 2CRACK
was written to enable users unfamiliar with finite element procedures to analyze
laminated composite panels either with or without pre-existing matrix cracks and
delaminations.

A typical terminal session using 2CRACK is listed below. The problem solved

is a flat panel subjected to a line load as described in Chapter 3.
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Input Data Files for Computer Codes
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Appendix E: Input Data Files for Computer Codes 161

. STARSDUAL: (DURAND] INPUT.DAT; 1 20-AUG-1992 09:24 Page 1
|

Fl mesh: flat: "fl", cylindrical : “cy"

10 ncrack:l-originally cracked; O-originally perfect

—0.40000E-02 du: displacement increment
0.15000E+04  xload: maximum load
P:O itter: load step number limit
0.15200E+01  arc: arch-arc angle; plateﬂnodel length
0.00000E+00 rin: inner radius: plate: 0.0
| 0.89600E-01 hi: plate thickness
' 0.10000E+00 hO: plate thickness with strain gage attached
| 3 ibound: CC.R:3; MSS.R:9; CC.RN:10, SS.RN:1l., etc
1 nlp: SS point location for IBOUND=9
I

0.17600E+08 E_xx

i 0.14100E+07 E_yy

* 0.14100E+07 E_z2

! 0.81000E+06 G_xy for linear case; G o_xy fornonlinear case
0. 50360E+06  G_yz
G.81000E+06 G_x2z
G.23000E+00  Nu_xy

: 0.40000E+00  Nu_yz

. 0.29000E+00 Nu_xz

-0 In-situ strength? l:yes; O:no

2 icrit:1-Tsai;2-Hashin; 3-Gosse;4-Chang-Choi

1+ 0.22000E+06  X_t

i 0.23100E+06 X_c

' 0.64500E+04 Y_t for constant; Y o_t for in-situ |
C.13000E+0l A an empirical constant for in-situ Y_t ,
. 70000E+C0 B an empirical constant for in-situ Y_t i
0.36700E+05 Y_c
0.155CCE+CS  Shear strength !
0.2n000E+01 C an empirical constant for in-situ S ¢
. LC0OCE+OL D an empirical constant for in-situ 5_c
0. 0CO00E+Q0 Alpha

- Q.50068E+CC Strain energy release rate for mode I, G_Ic

. 0.18000E+01 Strain energy release rate for mode II, G_IlIc

L3 Total number of stacks

3 Number ~f plies in stack no. 1

0.0CJJCE+CC  Orientation of stack no. 1
3 Number of plies in stack no. 2 !
. G.90CCCE+02  Orientation of stack no. 2

3 Number of plies in stack no. 3
: 0.000C0E+00  Orientation of stack no. 3
118 naply: Total number of actual plies
| 60 nelarc: number of elements on the length (or circumference)
| 2 nmdat: number of increments interval you want your output
: 1 igrow: l:initial damage growth; 0:no growth
| 4 n3krall: location of matrix crack (lower)
6 n3kral2: location of matrix crack (upper)

'loaddis.dat ' output LOAD-DISPLACEMENT FILE e.g.loaddis.dat

"drivel.dat ' plotting data file name FOR #1 DELAMINATION,e.g. drivel.dat
'"drive2.dat ' plotting data file name FOR #2 DELAMINATION,e.g. drive2.dat
|'stnl.dat ' plotting data file name FOR #1 DELAMINATION,e.g. stnl.dat
“stn2.dat * plotting data file name FOR #2 DELAMINATION,e.g. stn2.dat
"mesh.dat ' deformed shape data file name, e.g. mesh.dat

‘fa1l . dat ' FAILURE data file name, e.g. fail.dat

t
!
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§E.2 Input Data for 3SCRACK

The model described in Chapter 4, was implemented into a nonlinear finite
element program designated as “3CRACK”. An input data and the Uesr Manual
to 3CRACK were written to enable users unfamiliar with finite element procedures
to analyze laminated composite panels either with or without pre-existing matrix
cracks and delaminations.

A typical input data file using 3CRACK is listed below. The problem solved
is a flat panel containing an existing surface crack, an internal shear crack and an

elliptical delamination subjected to a spherical indenter as described in Chapter 4.
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SAMPLE INPUT.DAT DELAMINATION
WITH BOTH TYPES OF CRACKS

STARSDUAL: [DURAND] INPUT.DAT; 2 20-AUG-1992 09:35 Page 1

{

r—

0 igrad: consider updating stiffness 1: yes 0: no

‘0 liucd: consider material degradation 1: yes 0: no

F2  load: load type O0: POINT; 1:LINE; 2:CONTACT 3:Beam Comp; —2: Hertz cont
EO 005 du: DISPLACEMENT INCREMENT

rimpact: indenter radius
xload: MAXIMUM LOAD desired
3 IGEQ: Geometry type 1:CYLINDER; 2:ARC; 3:BEAM
IGEOS:plate type l:solid; 2:DCB; 3: plate with ec del;4: del+shear cr

1 MOPTN:1: 1/4 model (l/2 for DCB); 2:1/2 model (full for DCB)

.0,1.5,0.104 xleng,yleng,zleng: sizes of the plate
0.0 Rin: inner radius for the curved plate. zero for flat panels

18 IBOUND:1:CC.FF 2:CC.SYM 3:CORNER.CC.SYM 7.BE.CC.SYM 18:CC+bc+sc 19: 20:

nxsegt: total ¥ of segments in x direction

1,1,1,1,1,1,2,1,1 nxseg{l-nxsegt): ¥ of elements in each segment.

0.03,0.06,0.02,0.01,0.01,0.01,1.19,0.2,0.47 xseg(l-nxsegt):segments sizes
4 nssegt: total ¥ of segments in theta(s) direction
1,1 1,1 nsseg(l-nxsegt): # of elements in each segment.
22.5,22.5,22.5,22.5 sseg(l-nssegt):segments in degrees
4 nzsegt: total % of segments in thickness direction
2,1,1,1 nzseg(l-nxsegt): ¢ of elements in each segment.
0.013,0.039,0.039,0.013 zseg(l-nzsegt): segments sizes
i1 NDEL: number of delaminations. limited to 1, or 0 for undelaminated panels
5. nxseqc.nzsegc: delamination location ¥ of segments in x and 2z
€.10,0.15,0.0899 ra,rb.rc:size of del.long/short ax,rc<min(ra,rb)-nxseg(nxsegc)
n.013 dzle: delamination location in thickness direction
2.,0.375,0.013 icshape(l),rxc(l),rzc(l):bend crack. type, x and z sizes
'0.151 rye(l): shear crack length {in y)
1.0.03 nbs her,sher: location in segment # and size of shear crack in x
0.0131,0.0305 shzcl,shze2: location of shear crack in 2
23.2e+06 , 1.3284e+06 , 1.32B4e+06 ex,ey,ez: young's modului in x,y,and 2z
'0.9086e+06 , 0.9086e+06 ., 0.9086e+06 gxy.gyz,gxz: shear mogului

1
1
.C
0.

.28 , .28 , .28 wxy,vyz,vxz: poisson's ratios

1412930.,190840. XX, XXC: tensile and comprescive strength in x
6410.,24346. YY, YYC: tensile and compressive strength in y

5877. S§50: in-plane shear for

0.0 ALPHA: SHEAR NONLINEARITY FACTOR

0.,0. AXX, AYY:thermal expansion coefficients in x and y

i75. TR: Stress free temperature

75. TO: Room temperature

!2 icrit: type of criterion for initial damage: l:Tsai 2:Hashin 3:Gosse

l 5 ,18.0,18.0 Gmaxn,gmaxs,gmaxt: fracture toughnss in Mode I,II,and III
NPLYG: % OF PLY GROUPS, refer to nzsegt, counting from the bottom

t2 $ OF LAYERS IN %1 GROUP

Q. PLY ORIENTATION OF #1 GROUP

!1 ¢ of layers in group #2

90.0 ply orientation of ply group #2

1 # of layers in group #3

90. ply orientation of ply group #3

1 # of layers in group #4

0. ply orientation of ply group ¥4
n,1,2,1,1,1,1,10000. 1,icontac,islt,npas,isech,ictype,naug,penp
2,1,2,2,1,1,1,10000. 2,icontac,islt,npas,isech,ictype, naug,penp
0.

0.

s T T T I T Ty o 2 - —— - ' — o
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SUMMARY

This manual describes the input data used by 3CRACK. For convenience, the
input data is read from one file: input.dat. The input data is arranged in the

following sequence:
1) Global parameters and control data.
2) Loading.
3) Geometry of the panel.
4) Boundary conditions.
5) Finite element mesh.
6) For cracked specimens, the location of the cracks.
7) Material properties.
8) Lay-up.
9) For contact, specify contact stiffness and solution algorithm.

The data is read in format free input; hence, comments can be inserted in the
input files between the data lines and following the last item in a data line. Here, a
data line is defined as a sequence of input values that follow continuously, usually on

one line.
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INPUT.DAT-a manual
1. Control Parameters
igrad: updated stiffness index

1: the material stiffness coefficients c;; are updated. In general, the convergence

can be improved;

0: ¢ij = C;; is assumed. It can save computing time in calculting the ¢;; due to the

deformation.
lived: material degradation index
1: Material degradation model is activated;

0: No material degradation is considered. It is suggested not to consider material

degradation for the time being.
2. Loading Parameters
load: load type index.
0: a point load applied at the center of the plate;
1: a line load uniformly applied in the center line of width direction;
2: contact load applied by in-situ contact;
3: axial compression applied;
-2: Hertzian contact applied.
du: displacement load increment for each step.
ndcb: line load type index. Not used for other types of load.

2: a line load applied on upper and lower center line of the specimen such as in
DCB I loading ;

1: a line load applied on upper center line of the specimen such as in DCB II, I+I1,

or cylindrical line loading ;

-1: a line load applied on the lower ceater line of the specimen.
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rimpact: indenter/impact radius. Enter only for contact loads (Load=2, or -2).
zload: the maximum load desired.
3-Geometry Parameters

igeo: geometry type.

1: for a full cylinder;

2: for a arch ;

3: for a beam or plate.
igeos: plate type.

1: for a solid beam or plate;

2: fcr a DCB beam (with one through-the-width crack);

3: for a plate with an elliptical delamination (with or without a bendingcrack);

9: for a plate with an elliptical delamination offset by an internal shear crack (with

or without a bending crack).
moptn: symmetry index for analysis.
1: 1/4 model for regular plate, 1/2 for a DCB or a cantilever plate;

2: 1/2 model for a reqular plate, full model for a DCB or a cantilever plate. In

most cases, half or 1/4 model is used.

zleng,yleng,zleng: beam or plate dimensions in the length, width, and thickness

directions.
arc: arch angle in terms of degrees (enter only for arc and cylinders.)
rin: for arc, enter the inner radius; for plate enter 0.

4-Boundary Conditions (support conditions)
tbound: boundary conditions type (including matrix cracks conditions)

1: left side-full clamped, other three sides-free (typical for cantilever beam of DCB);
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16:

18:

19:

20:

: back and front sides - free, left side - full clamp, right side-symmetry roller

support;

: back and front sides - free, left side - upper and lower edges compressive clamp

(allowing the axial movement), right side - symmetry roller support;

: back and front sides - free, left side - full compressive clamp (allowing axial

movement ), right side - symmetry roller support;

back and front sides - free, left side - full clamp, right side - symmetry roller
support, bending crack in the x-z plane (simulating splitting the outermost 0

degree layers);

back and front sides - free, left side - full clamp, right side - symmetry roller
support, bending crack in the x-z plane (simulating splitting the outermost 0
degree layers). In addition, a shear crack at a distance from the indenter is

simulated;

1/4 model for a four sided simply supported plate. Back -SS, front - symmetry
roller, left side - SS, right side - symmetry roller support;

1/4 model for a four sided simply supported plate but constrained to have w = 0

on the bottom of the plate.

5-Mesh Generation

First enter the information needed for x direction:

nzsegt: number of the segments in x direction for mesh generation.
(nzseg(i),1=1,nzsegt): number of the elements in each segment.
(zseg(i),i=1,nzsegt). size of each segment.

(It is noted that a non-uniform mesh can be formed, which is helpful for areas

such as concentrated loading zone and the crack front, where a very fine mesh is

desired. There are several checks to be done to make sure the mesh is right. The

key checks are the length of the beam (xleng), the critical shear crack location, the
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delamination size. For example, the sum of xseg(1 to nxsegt) has to be the length of

the plate. More will be discussed in the following.)
Then enter the information needed for y or theta direction:

For igeos > 3 and igeos < 9, enter information for panels containing elliptical

delaminations. In this case, the sseg(3) has to input the angles in terms of degrees.
nssegt: number of the segments in angle direction for mesh generation.
(nsseg(i),i=1,nssegt): number of the elements in each segment.
(sseg(i),i=1,nssegt): size of each segment, the sum of them must be 90 degrees.
Otherwise, enter information for panels without delamination.
nysegt. number of the segments in y direction for mesh generation.
(nyseg(i),i=1,nysegt): number of the elements in each segment.
(yseg(i),s=1,nysegt): size of each segment.
6-Delamination and Matriz Cracks
ndel: input delamination index.
0: no delamintion;
1: one delamination;

If there is a delamintion (ndel # 0), determine the location of the delamination:

nzsegc,nzsegc: delamination location index.

nzsegc: Number of segments in the span length before the delamintion front in terms of

nzsegt and nzseg(i);

nzsegc: Number of segments in the thickness direction before the delamintion front in

terms of nzsegt and nzseg(s).
ra,rb,rc: delamination size index.
ra: elliptical size in x axis;

rb: elliptical size in y axis;
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rc: a number used for modified elliptical transformation in generating the mesh.
And it should be a number smaller than either rqa or rb such that the one or
two row elements in the delamination front is allowed. The estimated formula is

given as: r¢ < min(ra,rb) - xseg(nxsegc).
dzle: delamination location in thickness direction

If there is any bending crack (tbound > 14 and ibound < 18), the location, shape,

and size of the bending crack need to be determined.
icshape(1),rzc(1),rz¢(1): bending crack location, shape, and size.
icshape(1): bending crack shap: 2-rectangular; 1-elliptical. 2 is recommened.
rzc(1): bending crack length in x direction.
rzc(1): bending crack depth in thickness direction.

If there is any shear crack (tbound = 9), the location, shape, and size of the
shear crack needs to be determined.

ryc(1): shear crack length in y direction
nbshcr,sher: shear crack location in x direction
nbsher: number of segment in terms of nzseg(s).

sher: location in terms of size in x, which is the distance from the indenter or the

center line of the plate.

shzcl,shzc®: shear crack location in z direction.
shzcl: the location of the lower tip of the shear crack.
shzc®: the location of the upper tip of the shear crack.

The key check here is that the mentioned quantities are generally associated with
the 0/90 or 90/0 interface heights.

7-Material Properties

EX,EY,EZ: enter Young's moduli EX,EY EZ.
GXY,GYZ,GXZ. enter the shear moduli GXY,GYZ,GXZ.

VXY,VYZ,VXZ: enter the Poission’s ratios: VXY,VYZ,VXZ.
XX,XXC: enter the strength in longitudianal direction XX,XXC.
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YY,YYC: enter the strength In transverse direction YY,YYC.

SS0: enter the shear Strength SS.

ALPHA: enter the nonlinear shear parameter : ALPHA.

AXX,AYY: enter the thermal coefficients (AXX,AYY)

TR: enter the stress free temperature.

T0: enter the room temperature.

ICRIT:enter failure criteria optioné.l:TSAI 2:HASHIN 3:GOSSE.
GMAXN,GMAXS,GMAXT: enter the fracture toughness in Mode I, II, and III.

8 - LAY-UPS

NPLYG: enter the number of ply group.
The following is for each layer counting from the bottom ply.
NLYG(I): enter the number of plies for ply group I

ALYG(I): enter the ply orientation for ply group I

9 - contact algorithm input

data

i

icontac(i):
islt(i):
npas(i):
isech(i):
ictype(i):
naug(i):

penp(i):

i,icontac(s),islt(i),npas(i),isech(i),ictype(i), naug(i),penp(i): contact interface

the i-th contact surface. In general, two contact surfaces are considered. One is
the contact between the indenter and the plate. The other is the delamination

contact.

1: activating the contact algorithm; 0: no contact considered.

1: penalty method; 2: augmented Lagrangian method.

1: one-pass algorithm; 2: two-pass algorithm.

1: the type-1 simple search algorithm; 2: more rigious search algorithm.

contact element type. 0: node-to-node; 1: node-surface; 2: adaptive.

enter 1 please.

penalty parameter.
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